File size: 4,818 Bytes
b0503ee
1fb0b90
84669bc
b7577da
7feda08
7fc55d1
 
6d0ac04
1fb0b90
7fc55d1
51568dc
6ba2176
1fb0b90
6ba2176
 
 
c163eb2
6ba2176
7feda08
1fb0b90
 
 
 
 
 
 
 
f036c05
1fb0b90
f036c05
15f7e94
 
 
 
e00f367
 
1fb0b90
e00f367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb0b90
e00f367
 
 
a456e86
 
 
e00f367
 
 
 
 
1fb0b90
e00f367
 
 
 
de007f1
a456e86
 
 
 
de007f1
a456e86
 
 
 
e00f367
 
 
 
a456e86
1fb0b90
a456e86
 
 
 
 
 
 
 
 
 
 
 
 
 
847e3e1
e5063d8
1fb0b90
 
 
2f3beab
 
 
 
 
 
e5063d8
1fb0b90
c163eb2
51568dc
 
 
1fb0b90
 
 
 
d35a2d1
51568dc
d35a2d1
51568dc
a456e86
d35a2d1
1fb0b90
aed9390
1fb0b90
2f3beab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import subprocess
import gradio as gr
from transformers import pipeline
import spacy
import nltk
from nltk.corpus import wordnet

# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

def predict_en(text):
    """ Function to predict the label and score for English text (AI Detection) """
    res = pipeline_en(text)[0]
    return res['label'], res['score']

def get_synonyms_nltk(word, pos):
    """ Function to get synonyms using NLTK WordNet """
    synsets = wordnet.synsets(word, pos=pos)
    if synsets:
        lemmas = synsets[0].lemmas()
        return [lemma.name() for lemma in lemmas]
    return []

def capitalize_sentences_and_nouns(text):
    """ Function to capitalize the first letter of sentences and proper nouns """
    doc = nlp(text)
    corrected_text = []
    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:  # First word of the sentence
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":  # Proper noun
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))
    return ' '.join(corrected_text)

def correct_tense_errors(text):
    """ Function to correct tense errors in a sentence """
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

def correct_singular_plural_errors(text):
    """ Function to correct singular/plural errors """
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "NOUN":
            if token.tag_ == "NN":  # Singular noun
                if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
                    corrected_text.append(token.lemma_ + 's')
                else:
                    corrected_text.append(token.text)
            elif token.tag_ == "NNS":  # Plural noun
                if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
                    corrected_text.append(token.lemma_)
                else:
                    corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

def correct_article_errors(text):
    """ Function to check and correct article errors """
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

def paraphrase_and_correct(text):
    """ Function to paraphrase and correct grammar """
    paraphrased_text = capitalize_sentences_and_nouns(text)  # Capitalize first to ensure proper noun capitalization
    
    # Apply grammatical corrections
    paraphrased_text = correct_article_errors(paraphrased_text)
    paraphrased_text = correct_singular_plural_errors(paraphrased_text)
    paraphrased_text = correct_tense_errors(paraphrased_text)

    return paraphrased_text

# Setup Gradio interface
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("🤖 Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label')
        score1 = gr.Textbox(lines=1, label='Score')

        button1.click(predict_en, inputs=[t1], outputs=[label1, score1])

    with gr.Tab("Humanifier"):
        text_input = gr.Textbox(lines=5, label="Input Text")
        paraphrase_button = gr.Button("Paraphrase & Correct")
        output_text = gr.Textbox(label="Paraphrased Text")

        paraphrase_button.click(paraphrase_and_correct, inputs=[text_input], outputs=[output_text])

# Launch the app
demo.launch()