import gradio as gr import torch import spacy import subprocess import nltk from nltk.corpus import wordnet from gensim import downloader as api from gramformer import Gramformer # Ensure necessary NLTK data is downloaded nltk.download('wordnet') nltk.download('omw-1.4') # Ensure the spaCy model is installed try: nlp = spacy.load("en_core_web_sm") except OSError: subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") # Load a smaller Word2Vec model from Gensim's pre-trained models word_vectors = api.load("glove-wiki-gigaword-50") # Check for GPU and set the device accordingly device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load Gramformer for grammar correction (model 2 for correction) gf = Gramformer(models=2, use_gpu=torch.cuda.is_available()) # AI detection model and tokenizer remain the same as before from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer_ai = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") model_ai = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) # AI detection function using DistilBERT def detect_ai_generated(text): inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device) with torch.no_grad(): outputs = model_ai(**inputs) probabilities = torch.softmax(outputs.logits, dim=1) ai_probability = probabilities[0][1].item() # Probability of being AI-generated return f"AI-Generated Content Probability: {ai_probability * 100:.2f}%" # Function to get synonyms using NLTK WordNet def get_synonyms_nltk(word, pos): synsets = wordnet.synsets(word, pos=pos) if synsets: lemmas = synsets[0].lemmas() return [lemma.name() for lemma in lemmas] return [] # Function to check and correct tenses and verbs using spaCy def check_tense_and_correct(text): doc = nlp(text) corrected_text = [] for token in doc: # Checking for verbs and their tense if token.pos_ == 'VERB': tense = token.tag_ # Get the specific tense tag (e.g., VBZ, VBD, VBG, etc.) if tense == 'VBZ': # 3rd person singular present corrected_text.append(token.lemma_) # Replace with base form (example: goes -> go) elif tense == 'VBD': # Past tense corrected_text.append(token.text) # Keep past tense as is elif tense == 'VBG': # Gerund/Present participle corrected_text.append(token.text) # Keep it unchanged for now else: corrected_text.append(token.text) # For other cases, append the word as is else: corrected_text.append(token.text) return ' '.join(corrected_text) # Function to capitalize the first letter of sentences and proper nouns def capitalize_sentences_and_nouns(text): doc = nlp(text) corrected_text = [] for sent in doc.sents: sentence = [] for token in sent: if token.i == sent.start: # First word of the sentence sentence.append(token.text.capitalize()) elif token.pos_ == "PROPN": # Proper noun sentence.append(token.text.capitalize()) else: sentence.append(token.text) corrected_text.append(' '.join(sentence)) return ' '.join(corrected_text) # Paraphrasing function using spaCy and NLTK def paraphrase_with_spacy_nltk(text): doc = nlp(text) paraphrased_words = [] for token in doc: # Map spaCy POS tags to WordNet POS tags pos = None if token.pos_ in {"NOUN"}: pos = wordnet.NOUN elif token.pos_ in {"VERB"}: pos = wordnet.VERB elif token.pos_ in {"ADJ"}: pos = wordnet.ADJ elif token.pos_ in {"ADV"}: pos = wordnet.ADV synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] # Replace with a synonym only if it makes sense if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): paraphrased_words.append(synonyms[0]) else: paraphrased_words.append(token.text) # Join the words back into a sentence paraphrased_sentence = ' '.join(paraphrased_words) # Capitalize sentences and proper nouns corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence) return corrected_text # Function to correct grammar using Gramformer def correct_grammar(text): corrected_sentences = gf.correct(text) return corrected_sentences[0] if corrected_sentences else text # Combined function: Paraphrase -> Tense Check -> Capitalization -> Grammar Correction def paraphrase_and_correct(text): # Step 1: Paraphrase the text paraphrased_text = paraphrase_with_spacy_nltk(text) # Step 2: Check tense and verbs, and attempt correction tense_checked_text = check_tense_and_correct(paraphrased_text) # Step 3: Capitalize sentences and proper nouns capitalized_text = capitalize_sentences_and_nouns(tense_checked_text) # Step 4: Correct grammar using Gramformer final_text = correct_grammar(capitalized_text) return final_text # Gradio interface definition with gr.Blocks() as interface: with gr.Row(): with gr.Column(): text_input = gr.Textbox(lines=5, label="Input Text") detect_button = gr.Button("AI Detection") paraphrase_button = gr.Button("Paraphrase & Correct") with gr.Column(): output_text = gr.Textbox(label="Output") detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text) paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text) # Launch the Gradio app interface.launch(debug=False)