# Import dependencies import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import nltk from nltk.corpus import wordnet from gensim.models import KeyedVectors from nltk.tokenize import word_tokenize # Download NLTK data (if not already downloaded) nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') # Download WordNet # Load Word2Vec model from Gensim word_vectors = KeyedVectors.load_word2vec_format('path/to/GoogleNews-vectors-negative300.bin.gz', binary=True, limit=100000) # Adjust path as needed # Check for GPU and set the device accordingly device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load AI Detector model and tokenizer from Hugging Face (DistilBERT) tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) # Function to get synonyms using Gensim Word2Vec def get_synonyms_gensim(word): try: synonyms = word_vectors.most_similar(positive=[word], topn=5) return [synonym[0] for synonym in synonyms] except KeyError: return [] # Paraphrasing function using Gensim for synonym replacement def paraphrase_text(text): words = word_tokenize(text) paraphrased_words = [] for word in words: synonyms = get_synonyms_gensim(word.lower()) if synonyms: paraphrased_words.append(synonyms[0]) else: paraphrased_words.append(word) return ' '.join(paraphrased_words) # AI detection function using DistilBERT def detect_ai_generated(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.softmax(outputs.logits, dim=1) ai_probability = probabilities[0][1].item() # Probability of being AI-generated return f"AI-Generated Content Probability: {ai_probability:.2f}%" # Gradio interface definition with gr.Blocks() as interface: with gr.Row(): with gr.Column(): text_input = gr.Textbox(lines=5, label="Input Text") detect_button = gr.Button("AI Detection") paraphrase_button = gr.Button("Paraphrase Text") with gr.Column(): output_text = gr.Textbox(label="Output") detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text) paraphrase_button.click(paraphrase_text, inputs=text_input, outputs=output_text) # Launch the Gradio app interface.launch(debug=False)