# Import dependencies import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration import torch import nltk # Download NLTK data (if not already downloaded) nltk.download('punkt') nltk.download('stopwords') # Check for GPU and set the device accordingly device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load AI Detector model and tokenizer from Hugging Face (DistilBERT) tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) # Load SRDdev Paraphrase model and tokenizer for humanizing text paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase") paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase").to(device) # AI detection function using DistilBERT def detect_ai_generated(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.softmax(outputs.logits, dim=1) ai_probability = probabilities[0][1].item() # Probability of being AI-generated return ai_probability # Humanize the AI-detected text using the SRDdev Paraphrase model def humanize_text(AI_text): paragraphs = AI_text.split("\n") paraphrased_paragraphs = [] for paragraph in paragraphs: if paragraph.strip(): inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device) paraphrased_ids = paraphrase_model.generate( inputs['input_ids'], max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length num_beams=4, early_stopping=True, length_penalty=1.0, no_repeat_ngram_size=3, ) paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True) paraphrased_paragraphs.append(paraphrased_text) return "\n\n".join(paraphrased_paragraphs) # Main function to handle the overall process def main_function(AI_text): ai_probability = detect_ai_generated(AI_text) # Humanize AI text humanized_text = humanize_text(AI_text) return f"AI-Generated Content: {ai_probability:.2f}%\n\nHumanized Text:\n{humanized_text}" # Gradio interface definition interface = gr.Interface( fn=main_function, inputs="textbox", outputs="textbox", title="AI Text Humanizer", description="Enter AI-generated text and get a human-written version. This space uses models from Hugging Face directly." ) # Launch the Gradio app interface.launch(debug=True)