Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,7 +12,7 @@ from inflect import engine # For pluralization
|
|
| 12 |
# Initialize the English text classification pipeline for AI detection
|
| 13 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 14 |
|
| 15 |
-
# Initialize the spell checker
|
| 16 |
spell = SpellChecker()
|
| 17 |
inflect_engine = engine()
|
| 18 |
|
|
@@ -27,7 +27,7 @@ except OSError:
|
|
| 27 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 28 |
nlp = spacy.load("en_core_web_sm")
|
| 29 |
|
| 30 |
-
# Function to predict
|
| 31 |
def predict_en(text):
|
| 32 |
res = pipeline_en(text)[0]
|
| 33 |
return res['label'], res['score']
|
|
@@ -40,158 +40,23 @@ def get_synonyms_nltk(word, pos):
|
|
| 40 |
return [lemma.name() for lemma in lemmas if lemma.name() != word] # Avoid original word
|
| 41 |
return []
|
| 42 |
|
| 43 |
-
# Function to remove redundant
|
| 44 |
def remove_redundant_words(text):
|
| 45 |
-
doc = nlp(text)
|
| 46 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 47 |
-
|
| 48 |
-
return ' '.join(filtered_text)
|
| 49 |
-
|
| 50 |
-
# Function to capitalize the first letter of sentences and proper nouns
|
| 51 |
-
def capitalize_sentences_and_nouns(text):
|
| 52 |
-
doc = nlp(text)
|
| 53 |
-
corrected_text = []
|
| 54 |
-
|
| 55 |
-
for sent in doc.sents:
|
| 56 |
-
sentence = []
|
| 57 |
-
for token in sent:
|
| 58 |
-
if token.i == sent.start: # First word of the sentence
|
| 59 |
-
sentence.append(token.text.capitalize())
|
| 60 |
-
elif token.pos_ == "PROPN": # Proper noun
|
| 61 |
-
sentence.append(token.text.capitalize())
|
| 62 |
-
else:
|
| 63 |
-
sentence.append(token.text)
|
| 64 |
-
corrected_text.append(' '.join(sentence))
|
| 65 |
-
|
| 66 |
-
return ' '.join(corrected_text)
|
| 67 |
-
|
| 68 |
-
# Function to correct tense errors in a sentence
|
| 69 |
-
def correct_tense_errors(text):
|
| 70 |
-
doc = nlp(text)
|
| 71 |
-
corrected_text = []
|
| 72 |
-
for token in doc:
|
| 73 |
-
if token.pos_ == "VERB":
|
| 74 |
-
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
| 75 |
-
corrected_text.append(lemma)
|
| 76 |
-
else:
|
| 77 |
-
corrected_text.append(token.text)
|
| 78 |
-
return ' '.join(corrected_text)
|
| 79 |
-
|
| 80 |
-
# Function to correct singular/plural errors using inflect
|
| 81 |
-
def correct_singular_plural_errors(text):
|
| 82 |
-
doc = nlp(text)
|
| 83 |
-
corrected_text = []
|
| 84 |
-
|
| 85 |
-
for token in doc:
|
| 86 |
-
if token.pos_ == "NOUN":
|
| 87 |
-
if token.tag_ == "NN": # Singular noun
|
| 88 |
-
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
| 89 |
-
corrected_text.append(inflect_engine.plural(token.lemma_))
|
| 90 |
-
else:
|
| 91 |
-
corrected_text.append(token.text)
|
| 92 |
-
elif token.tag_ == "NNS": # Plural noun
|
| 93 |
-
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
| 94 |
-
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text)
|
| 95 |
-
else:
|
| 96 |
-
corrected_text.append(token.text)
|
| 97 |
-
else:
|
| 98 |
-
corrected_text.append(token.text)
|
| 99 |
-
|
| 100 |
-
return ' '.join(corrected_text)
|
| 101 |
-
|
| 102 |
-
# Function to check and correct article errors
|
| 103 |
-
def correct_article_errors(text):
|
| 104 |
-
doc = nlp(text)
|
| 105 |
-
corrected_text = []
|
| 106 |
-
for token in doc:
|
| 107 |
-
if token.text in ['a', 'an']:
|
| 108 |
-
next_token = token.nbor(1)
|
| 109 |
-
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
| 110 |
-
corrected_text.append("an")
|
| 111 |
-
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
| 112 |
-
corrected_text.append("a")
|
| 113 |
-
else:
|
| 114 |
-
corrected_text.append(token.text)
|
| 115 |
-
else:
|
| 116 |
-
corrected_text.append(token.text)
|
| 117 |
-
return ' '.join(corrected_text)
|
| 118 |
-
|
| 119 |
-
# Function to get the correct synonym while maintaining verb form
|
| 120 |
-
def replace_with_synonym(token):
|
| 121 |
-
pos = {
|
| 122 |
-
"VERB": wordnet.VERB,
|
| 123 |
-
"NOUN": wordnet.NOUN,
|
| 124 |
-
"ADJ": wordnet.ADJ,
|
| 125 |
-
"ADV": wordnet.ADV
|
| 126 |
-
}.get(token.pos_, None)
|
| 127 |
-
|
| 128 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
| 129 |
-
|
| 130 |
-
if synonyms:
|
| 131 |
-
synonym = synonyms[0]
|
| 132 |
-
if token.tag_ == "VBG": # Present participle
|
| 133 |
-
synonym += 'ing'
|
| 134 |
-
elif token.tag_ in {"VBD", "VBN"}: # Past tense or past participle
|
| 135 |
-
synonym += 'ed'
|
| 136 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
| 137 |
-
synonym += 's'
|
| 138 |
-
return synonym
|
| 139 |
-
return token.text
|
| 140 |
-
|
| 141 |
-
# Function to check for and avoid double negatives
|
| 142 |
-
def correct_double_negatives(text):
|
| 143 |
-
doc = nlp(text)
|
| 144 |
-
corrected_text = []
|
| 145 |
-
for token in doc:
|
| 146 |
-
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
|
| 147 |
-
corrected_text.append("always")
|
| 148 |
-
else:
|
| 149 |
-
corrected_text.append(token.text)
|
| 150 |
-
return ' '.join(corrected_text)
|
| 151 |
-
|
| 152 |
-
# Function to ensure subject-verb agreement
|
| 153 |
-
def ensure_subject_verb_agreement(text):
|
| 154 |
-
doc = nlp(text)
|
| 155 |
-
corrected_text = []
|
| 156 |
-
for token in doc:
|
| 157 |
-
corrected_text.append(token.text)
|
| 158 |
-
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
| 159 |
-
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb
|
| 160 |
-
corrected_text[-1] = token.head.lemma_ + "s"
|
| 161 |
-
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb
|
| 162 |
-
corrected_text[-1] = token.head.lemma_
|
| 163 |
-
return ' '.join(corrected_text)
|
| 164 |
|
| 165 |
# Function to correct spelling errors
|
| 166 |
def correct_spelling(text):
|
| 167 |
words = text.split()
|
| 168 |
-
corrected_words = []
|
| 169 |
-
for word in words:
|
| 170 |
-
corrected_word = spell.correction(word)
|
| 171 |
-
corrected_words.append(corrected_word if corrected_word else word) # Keep original if correction is None
|
| 172 |
return ' '.join(corrected_words)
|
| 173 |
|
| 174 |
-
# Function to
|
| 175 |
-
def correct_punctuation(text):
|
| 176 |
-
text = re.sub(r'\s+([?.!,";:])', r'\1', text) # Remove space before punctuation
|
| 177 |
-
text = re.sub(r'([?.!,";:])\s+', r'\1 ', text) # Ensure a single space after punctuation
|
| 178 |
-
return text
|
| 179 |
-
|
| 180 |
-
# Function to ensure correct handling of possessive forms
|
| 181 |
-
def handle_possessives(text):
|
| 182 |
-
text = re.sub(r"\b(\w+)'s\b", r"\1's", text) # Preserve possessive forms
|
| 183 |
-
return text
|
| 184 |
-
|
| 185 |
-
# Function to rephrase text and replace words with their synonyms while maintaining form
|
| 186 |
def rephrase_with_synonyms(text):
|
| 187 |
doc = nlp(text)
|
| 188 |
rephrased_text = []
|
| 189 |
|
| 190 |
for token in doc:
|
| 191 |
-
if token.pos_ == "NOUN" and token.text.lower() == "earth":
|
| 192 |
-
rephrased_text.append("Earth")
|
| 193 |
-
continue
|
| 194 |
-
|
| 195 |
pos_tag = {
|
| 196 |
"NOUN": wordnet.NOUN,
|
| 197 |
"VERB": wordnet.VERB,
|
|
@@ -201,74 +66,36 @@ def rephrase_with_synonyms(text):
|
|
| 201 |
|
| 202 |
if pos_tag:
|
| 203 |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
| 204 |
-
if synonyms
|
| 205 |
-
|
| 206 |
-
if token.pos_ == "VERB":
|
| 207 |
-
if token.tag_ == "VBG": # Present participle
|
| 208 |
-
synonym += 'ing'
|
| 209 |
-
elif token.tag_ in {"VBD", "VBN"}: # Past tense or past participle
|
| 210 |
-
synonym += 'ed'
|
| 211 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
| 212 |
-
synonym += 's'
|
| 213 |
-
rephrased_text.append(synonym)
|
| 214 |
-
else:
|
| 215 |
-
rephrased_text.append(token.text)
|
| 216 |
else:
|
| 217 |
rephrased_text.append(token.text)
|
| 218 |
|
| 219 |
return ' '.join(rephrased_text)
|
| 220 |
|
| 221 |
-
# Function to paraphrase and correct grammar
|
| 222 |
def paraphrase_and_correct(text):
|
| 223 |
-
# Remove meaningless or redundant words first
|
| 224 |
cleaned_text = remove_redundant_words(text)
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
| 228 |
-
|
| 229 |
-
# Correct tense and singular/plural errors
|
| 230 |
-
paraphrased_text = correct_tense_errors(paraphrased_text)
|
| 231 |
-
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
| 232 |
-
paraphrased_text = correct_article_errors(paraphrased_text)
|
| 233 |
-
|
| 234 |
-
# Correct spelling errors
|
| 235 |
-
paraphrased_text = correct_spelling(paraphrased_text)
|
| 236 |
-
|
| 237 |
-
# Correct punctuation issues
|
| 238 |
-
paraphrased_text = correct_punctuation(paraphrased_text)
|
| 239 |
-
|
| 240 |
-
# Handle possessives
|
| 241 |
-
paraphrased_text = handle_possessives(paraphrased_text)
|
| 242 |
-
|
| 243 |
-
# Ensure subject-verb agreement
|
| 244 |
-
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
| 245 |
-
|
| 246 |
-
# Replace with synonyms
|
| 247 |
-
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
| 248 |
-
|
| 249 |
-
# Correct for double negatives
|
| 250 |
-
paraphrased_text = correct_double_negatives(paraphrased_text)
|
| 251 |
-
|
| 252 |
-
return paraphrased_text
|
| 253 |
|
| 254 |
-
# Function to handle
|
| 255 |
def process_text(input_text):
|
| 256 |
ai_label, ai_score = predict_en(input_text)
|
| 257 |
-
ai_result = f"AI Detected: {ai_label} (Score: {ai_score:.2f})"
|
| 258 |
|
| 259 |
if ai_label == "HUMAN":
|
| 260 |
corrected_text = paraphrase_and_correct(input_text)
|
| 261 |
-
return corrected_text
|
| 262 |
else:
|
| 263 |
-
return "The text seems to be AI-generated; no correction applied."
|
| 264 |
|
| 265 |
# Gradio interface
|
| 266 |
iface = gr.Interface(
|
| 267 |
fn=process_text,
|
| 268 |
inputs=gr.Textbox(lines=10, placeholder="Enter your text here..."),
|
| 269 |
-
outputs=
|
| 270 |
-
title="Text Correction and
|
| 271 |
-
description="This app corrects
|
| 272 |
)
|
| 273 |
|
| 274 |
# Launch the interface
|
|
|
|
| 12 |
# Initialize the English text classification pipeline for AI detection
|
| 13 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 14 |
|
| 15 |
+
# Initialize the spell checker and inflect engine
|
| 16 |
spell = SpellChecker()
|
| 17 |
inflect_engine = engine()
|
| 18 |
|
|
|
|
| 27 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 28 |
nlp = spacy.load("en_core_web_sm")
|
| 29 |
|
| 30 |
+
# Function to predict AI detection
|
| 31 |
def predict_en(text):
|
| 32 |
res = pipeline_en(text)[0]
|
| 33 |
return res['label'], res['score']
|
|
|
|
| 40 |
return [lemma.name() for lemma in lemmas if lemma.name() != word] # Avoid original word
|
| 41 |
return []
|
| 42 |
|
| 43 |
+
# Function to remove redundant words
|
| 44 |
def remove_redundant_words(text):
|
|
|
|
| 45 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 46 |
+
return ' '.join(word for word in text.split() if word.lower() not in meaningless_words)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
# Function to correct spelling errors
|
| 49 |
def correct_spelling(text):
|
| 50 |
words = text.split()
|
| 51 |
+
corrected_words = [spell.correction(word) for word in words]
|
|
|
|
|
|
|
|
|
|
| 52 |
return ' '.join(corrected_words)
|
| 53 |
|
| 54 |
+
# Function to rephrase text with synonyms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def rephrase_with_synonyms(text):
|
| 56 |
doc = nlp(text)
|
| 57 |
rephrased_text = []
|
| 58 |
|
| 59 |
for token in doc:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
pos_tag = {
|
| 61 |
"NOUN": wordnet.NOUN,
|
| 62 |
"VERB": wordnet.VERB,
|
|
|
|
| 66 |
|
| 67 |
if pos_tag:
|
| 68 |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
| 69 |
+
synonym = synonyms[0] if synonyms else token.text
|
| 70 |
+
rephrased_text.append(synonym)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
else:
|
| 72 |
rephrased_text.append(token.text)
|
| 73 |
|
| 74 |
return ' '.join(rephrased_text)
|
| 75 |
|
| 76 |
+
# Function to paraphrase and correct grammar
|
| 77 |
def paraphrase_and_correct(text):
|
|
|
|
| 78 |
cleaned_text = remove_redundant_words(text)
|
| 79 |
+
cleaned_text = correct_spelling(cleaned_text)
|
| 80 |
+
return rephrase_with_synonyms(cleaned_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
# Function to handle user input
|
| 83 |
def process_text(input_text):
|
| 84 |
ai_label, ai_score = predict_en(input_text)
|
|
|
|
| 85 |
|
| 86 |
if ai_label == "HUMAN":
|
| 87 |
corrected_text = paraphrase_and_correct(input_text)
|
| 88 |
+
return corrected_text
|
| 89 |
else:
|
| 90 |
+
return "The text seems to be AI-generated; no correction applied."
|
| 91 |
|
| 92 |
# Gradio interface
|
| 93 |
iface = gr.Interface(
|
| 94 |
fn=process_text,
|
| 95 |
inputs=gr.Textbox(lines=10, placeholder="Enter your text here..."),
|
| 96 |
+
outputs=gr.Textbox(label="Corrected Text"),
|
| 97 |
+
title="Text Correction and Rephrasing",
|
| 98 |
+
description="This app corrects and rephrases text while detecting AI-generated content."
|
| 99 |
)
|
| 100 |
|
| 101 |
# Launch the interface
|