Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,144 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
-
|
27 |
-
# Load Gramformer for grammar correction (model 2 for correction)
|
28 |
-
gf = Gramformer(models=2, use_gpu=torch.cuda.is_available())
|
29 |
-
|
30 |
-
# AI detection model and tokenizer remain the same as before
|
31 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
32 |
-
tokenizer_ai = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
33 |
-
model_ai = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
|
34 |
-
|
35 |
-
# AI detection function using DistilBERT
|
36 |
-
def detect_ai_generated(text):
|
37 |
-
inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
38 |
-
with torch.no_grad():
|
39 |
-
outputs = model_ai(**inputs)
|
40 |
-
probabilities = torch.softmax(outputs.logits, dim=1)
|
41 |
-
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
|
42 |
-
return f"AI-Generated Content Probability: {ai_probability * 100:.2f}%"
|
43 |
-
|
44 |
-
# Function to get synonyms using NLTK WordNet
|
45 |
-
def get_synonyms_nltk(word, pos):
|
46 |
-
synsets = wordnet.synsets(word, pos=pos)
|
47 |
-
if synsets:
|
48 |
-
lemmas = synsets[0].lemmas()
|
49 |
-
return [lemma.name() for lemma in lemmas]
|
50 |
-
return []
|
51 |
-
|
52 |
-
# Function to check and correct tenses and verbs using spaCy
|
53 |
-
def check_tense_and_correct(text):
|
54 |
-
doc = nlp(text)
|
55 |
-
corrected_text = []
|
56 |
-
|
57 |
-
for token in doc:
|
58 |
-
if token.pos_ == 'VERB':
|
59 |
-
tense = token.tag_
|
60 |
-
if tense == 'VBZ':
|
61 |
-
corrected_text.append(token.lemma_)
|
62 |
-
elif tense == 'VBD':
|
63 |
-
corrected_text.append(token.text)
|
64 |
-
else:
|
65 |
-
corrected_text.append(token.text)
|
66 |
-
else:
|
67 |
-
corrected_text.append(token.text)
|
68 |
-
|
69 |
-
return ' '.join(corrected_text)
|
70 |
-
|
71 |
-
# Function to capitalize the first letter of sentences and proper nouns
|
72 |
-
def capitalize_sentences_and_nouns(text):
|
73 |
-
doc = nlp(text)
|
74 |
-
corrected_text = []
|
75 |
-
|
76 |
-
for sent in doc.sents:
|
77 |
-
sentence = []
|
78 |
-
for token in sent:
|
79 |
-
if token.i == sent.start:
|
80 |
-
sentence.append(token.text.capitalize())
|
81 |
-
elif token.pos_ == "PROPN":
|
82 |
-
sentence.append(token.text.capitalize())
|
83 |
-
else:
|
84 |
-
sentence.append(token.text)
|
85 |
-
corrected_text.append(' '.join(sentence))
|
86 |
-
|
87 |
-
return ' '.join(corrected_text)
|
88 |
-
|
89 |
-
# Paraphrasing function using spaCy and NLTK
|
90 |
-
def paraphrase_with_spacy_nltk(text):
|
91 |
-
doc = nlp(text)
|
92 |
-
paraphrased_words = []
|
93 |
-
|
94 |
-
for token in doc:
|
95 |
-
pos = None
|
96 |
-
if token.pos_ in {"NOUN"}:
|
97 |
-
pos = wordnet.NOUN
|
98 |
-
elif token.pos_ in {"VERB"}:
|
99 |
-
pos = wordnet.VERB
|
100 |
-
elif token.pos_ in {"ADJ"}:
|
101 |
-
pos = wordnet.ADJ
|
102 |
-
elif token.pos_ in {"ADV"}:
|
103 |
-
pos = wordnet.ADV
|
104 |
-
|
105 |
-
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
106 |
-
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
|
107 |
-
paraphrased_words.append(synonyms[0])
|
108 |
-
else:
|
109 |
-
paraphrased_words.append(token.text)
|
110 |
-
|
111 |
-
paraphrased_sentence = ' '.join(paraphrased_words)
|
112 |
-
corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence)
|
113 |
|
114 |
-
return
|
115 |
-
|
116 |
-
# Function to correct grammar using Gramformer
|
117 |
-
def correct_grammar(text):
|
118 |
-
corrected_sentences = gf.correct(text)
|
119 |
-
return corrected_sentences[0] if corrected_sentences else text
|
120 |
-
|
121 |
-
# Combined function: Paraphrase -> Tense Check -> Capitalization -> Grammar Correction
|
122 |
-
def paraphrase_and_correct(text):
|
123 |
-
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
124 |
-
tense_checked_text = check_tense_and_correct(paraphrased_text)
|
125 |
-
capitalized_text = capitalize_sentences_and_nouns(tense_checked_text)
|
126 |
-
final_text = correct_grammar(capitalized_text)
|
127 |
-
|
128 |
-
return final_text
|
129 |
-
|
130 |
-
# Gradio interface definition
|
131 |
-
with gr.Blocks() as interface:
|
132 |
-
with gr.Row():
|
133 |
-
with gr.Column():
|
134 |
-
text_input = gr.Textbox(lines=5, label="Input Text")
|
135 |
-
detect_button = gr.Button("AI Detection")
|
136 |
-
paraphrase_button = gr.Button("Paraphrase & Correct")
|
137 |
-
with gr.Column():
|
138 |
-
output_text = gr.Textbox(label="Output")
|
139 |
-
|
140 |
-
detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text)
|
141 |
-
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
142 |
|
143 |
-
#
|
144 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from gramformer import Gramformer # Assuming gramformer.py is in the same directory as this app
|
3 |
+
|
4 |
+
# Initialize Gramformer
|
5 |
+
gf = Gramformer(models=1, use_gpu=False) # Set use_gpu=True if using a GPU-enabled space
|
6 |
+
|
7 |
+
def correct_sentence(input_sentence):
|
8 |
+
# Use the correct method from Gramformer
|
9 |
+
corrected_sentences = gf.correct(input_sentence, max_candidates=1)
|
10 |
+
return "\n".join(corrected_sentences)
|
11 |
+
|
12 |
+
# Create Gradio interface
|
13 |
+
def gradio_interface():
|
14 |
+
input_text = gr.inputs.Textbox(lines=2, placeholder="Enter a sentence here...")
|
15 |
+
output_text = gr.outputs.Textbox()
|
16 |
+
|
17 |
+
# Gradio Interface: Takes a sentence, corrects it, and outputs the correction
|
18 |
+
iface = gr.Interface(
|
19 |
+
fn=correct_sentence,
|
20 |
+
inputs=input_text,
|
21 |
+
outputs=output_text,
|
22 |
+
title="Grammar Correction",
|
23 |
+
description="Corrects grammatical errors in the input sentence using the Gramformer model."
|
24 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
return iface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# Run the Gradio app
|
29 |
+
if __name__ == "__main__":
|
30 |
+
iface = gradio_interface()
|
31 |
+
iface.launch()
|