Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
import gradio as grimport os
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline
|
5 |
import spacy
|
@@ -247,280 +246,7 @@ def paraphrase_and_correct(text):
|
|
247 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
248 |
|
249 |
# Force capitalization of the first letter of each sentence
|
250 |
-
final_text =
|
251 |
-
|
252 |
-
return final_text
|
253 |
-
|
254 |
-
# Gradio Interface
|
255 |
-
def process_text(input_text):
|
256 |
-
ai_label, ai_score = predict_en(input_text)
|
257 |
-
corrected_text = paraphrase_and_correct(input_text)
|
258 |
-
return ai_label, ai_score, corrected_text
|
259 |
-
|
260 |
-
# Create Gradio interface
|
261 |
-
iface = gr.Interface(
|
262 |
-
fn=process_text,
|
263 |
-
inputs="text",
|
264 |
-
outputs=["text", "number", "text"],
|
265 |
-
title="AI Content Detection and Grammar Correction",
|
266 |
-
description="Enter text to detect AI-generated content and correct grammar."
|
267 |
-
)
|
268 |
-
|
269 |
-
# Launch the Gradio app
|
270 |
-
if __name__ == "__main__":
|
271 |
-
iface.launch()
|
272 |
-
|
273 |
-
from transformers import pipeline
|
274 |
-
import spacy
|
275 |
-
import subprocess
|
276 |
-
import nltk
|
277 |
-
from nltk.corpus import wordnet
|
278 |
-
from spellchecker import SpellChecker
|
279 |
-
import re
|
280 |
-
|
281 |
-
# Initialize the English text classification pipeline for AI detection
|
282 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
283 |
-
|
284 |
-
# Initialize the spell checker
|
285 |
-
spell = SpellChecker()
|
286 |
-
|
287 |
-
# Ensure necessary NLTK data is downloaded
|
288 |
-
nltk.download('wordnet')
|
289 |
-
nltk.download('omw-1.4')
|
290 |
-
|
291 |
-
# Ensure the SpaCy model is installed
|
292 |
-
try:
|
293 |
-
nlp = spacy.load("en_core_web_sm")
|
294 |
-
except OSError:
|
295 |
-
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
296 |
-
nlp = spacy.load("en_core_web_sm")
|
297 |
-
|
298 |
-
# Function to predict the label and score for English text (AI Detection)
|
299 |
-
def predict_en(text):
|
300 |
-
res = pipeline_en(text)[0]
|
301 |
-
return res['label'], res['score']
|
302 |
-
|
303 |
-
# Function to get synonyms using NLTK WordNet
|
304 |
-
def get_synonyms_nltk(word, pos):
|
305 |
-
synsets = wordnet.synsets(word, pos=pos)
|
306 |
-
if synsets:
|
307 |
-
lemmas = synsets[0].lemmas()
|
308 |
-
return [lemma.name() for lemma in lemmas]
|
309 |
-
return []
|
310 |
-
|
311 |
-
# Function to remove redundant and meaningless words
|
312 |
-
def remove_redundant_words(text):
|
313 |
-
doc = nlp(text)
|
314 |
-
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
315 |
-
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
316 |
-
return ' '.join(filtered_text)
|
317 |
-
|
318 |
-
# Function to capitalize the first letter of sentences and proper nouns
|
319 |
-
def capitalize_sentences_and_nouns(text):
|
320 |
-
doc = nlp(text)
|
321 |
-
corrected_text = []
|
322 |
-
|
323 |
-
for sent in doc.sents:
|
324 |
-
sentence = []
|
325 |
-
for token in sent:
|
326 |
-
if token.i == sent.start: # First word of the sentence
|
327 |
-
sentence.append(token.text.capitalize())
|
328 |
-
elif token.pos_ == "PROPN": # Proper noun
|
329 |
-
sentence.append(token.text.capitalize())
|
330 |
-
else:
|
331 |
-
sentence.append(token.text)
|
332 |
-
corrected_text.append(' '.join(sentence))
|
333 |
-
|
334 |
-
return ' '.join(corrected_text)
|
335 |
-
|
336 |
-
# Function to force capitalization of the first letter of every sentence
|
337 |
-
def force_first_letter_capital(text):
|
338 |
-
sentences = text.split(". ") # Split by period to get each sentence
|
339 |
-
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
|
340 |
-
return ". ".join(capitalized_sentences)
|
341 |
-
|
342 |
-
# Function to correct tense errors in a sentence
|
343 |
-
def correct_tense_errors(text):
|
344 |
-
doc = nlp(text)
|
345 |
-
corrected_text = []
|
346 |
-
for token in doc:
|
347 |
-
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
|
348 |
-
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
349 |
-
corrected_text.append(lemma)
|
350 |
-
else:
|
351 |
-
corrected_text.append(token.text)
|
352 |
-
return ' '.join(corrected_text)
|
353 |
-
|
354 |
-
# Function to correct singular/plural errors
|
355 |
-
def correct_singular_plural_errors(text):
|
356 |
-
doc = nlp(text)
|
357 |
-
corrected_text = []
|
358 |
-
|
359 |
-
for token in doc:
|
360 |
-
if token.pos_ == "NOUN":
|
361 |
-
if token.tag_ == "NN": # Singular noun
|
362 |
-
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
363 |
-
corrected_text.append(token.lemma_ + 's')
|
364 |
-
else:
|
365 |
-
corrected_text.append(token.text)
|
366 |
-
elif token.tag_ == "NNS": # Plural noun
|
367 |
-
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
368 |
-
corrected_text.append(token.lemma_)
|
369 |
-
else:
|
370 |
-
corrected_text.append(token.text)
|
371 |
-
else:
|
372 |
-
corrected_text.append(token.text)
|
373 |
-
|
374 |
-
return ' '.join(corrected_text)
|
375 |
-
|
376 |
-
# Function to check and correct article errors
|
377 |
-
def correct_article_errors(text):
|
378 |
-
doc = nlp(text)
|
379 |
-
corrected_text = []
|
380 |
-
for token in doc:
|
381 |
-
if token.text in ['a', 'an']:
|
382 |
-
next_token = token.nbor(1)
|
383 |
-
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
384 |
-
corrected_text.append("an")
|
385 |
-
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
386 |
-
corrected_text.append("a")
|
387 |
-
else:
|
388 |
-
corrected_text.append(token.text)
|
389 |
-
else:
|
390 |
-
corrected_text.append(token.text)
|
391 |
-
return ' '.join(corrected_text)
|
392 |
-
|
393 |
-
# Function to get the correct synonym while maintaining verb form
|
394 |
-
def replace_with_synonym(token):
|
395 |
-
pos = None
|
396 |
-
if token.pos_ == "VERB":
|
397 |
-
pos = wordnet.VERB
|
398 |
-
elif token.pos_ == "NOUN":
|
399 |
-
pos = wordnet.NOUN
|
400 |
-
elif token.pos_ == "ADJ":
|
401 |
-
pos = wordnet.ADJ
|
402 |
-
elif token.pos_ == "ADV":
|
403 |
-
pos = wordnet.ADV
|
404 |
-
|
405 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
406 |
-
|
407 |
-
if synonyms:
|
408 |
-
synonym = synonyms[0]
|
409 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
410 |
-
synonym = synonym + 'ing'
|
411 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
412 |
-
synonym = synonym + 'ed'
|
413 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
414 |
-
synonym = synonym + 's'
|
415 |
-
return synonym
|
416 |
-
return token.text
|
417 |
-
|
418 |
-
# Function to check for and avoid double negatives
|
419 |
-
def correct_double_negatives(text):
|
420 |
-
doc = nlp(text)
|
421 |
-
corrected_text = []
|
422 |
-
for token in doc:
|
423 |
-
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
|
424 |
-
corrected_text.append("always")
|
425 |
-
else:
|
426 |
-
corrected_text.append(token.text)
|
427 |
-
return ' '.join(corrected_text)
|
428 |
-
|
429 |
-
# Function to ensure subject-verb agreement
|
430 |
-
def ensure_subject_verb_agreement(text):
|
431 |
-
doc = nlp(text)
|
432 |
-
corrected_text = []
|
433 |
-
for token in doc:
|
434 |
-
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
435 |
-
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb
|
436 |
-
corrected_text.append(token.head.lemma_ + "s")
|
437 |
-
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb
|
438 |
-
corrected_text.append(token.head.lemma_)
|
439 |
-
corrected_text.append(token.text)
|
440 |
-
return ' '.join(corrected_text)
|
441 |
-
|
442 |
-
# Function to correct spelling errors
|
443 |
-
def correct_spelling(text):
|
444 |
-
words = text.split()
|
445 |
-
corrected_words = []
|
446 |
-
for word in words:
|
447 |
-
corrected_word = spell.correction(word)
|
448 |
-
corrected_words.append(corrected_word if corrected_word else word) # Keep original if correction is None
|
449 |
-
return ' '.join(corrected_words)
|
450 |
-
|
451 |
-
# Function to correct punctuation issues
|
452 |
-
def correct_punctuation(text):
|
453 |
-
text = re.sub(r'\s+([?.!,";:])', r'\1', text) # Remove space before punctuation
|
454 |
-
text = re.sub(r'([?.!,";:])\s+', r'\1 ', text) # Ensure a single space after punctuation
|
455 |
-
return text
|
456 |
-
|
457 |
-
# Function to ensure correct handling of possessive forms
|
458 |
-
def handle_possessives(text):
|
459 |
-
text = re.sub(r"\b(\w+)'s\b", r"\1's", text) # Preserve possessive forms
|
460 |
-
return text
|
461 |
-
|
462 |
-
# Function to rephrase text and replace words with their synonyms while maintaining form
|
463 |
-
def rephrase_with_synonyms(text):
|
464 |
-
doc = nlp(text)
|
465 |
-
rephrased_text = []
|
466 |
-
|
467 |
-
for token in doc:
|
468 |
-
pos_tag = None
|
469 |
-
if token.pos_ == "NOUN":
|
470 |
-
pos_tag = wordnet.NOUN
|
471 |
-
elif token.pos_ == "VERB":
|
472 |
-
pos_tag = wordnet.VERB
|
473 |
-
elif token.pos_ == "ADJ":
|
474 |
-
pos_tag = wordnet.ADJ
|
475 |
-
elif token.pos_ == "ADV":
|
476 |
-
pos_tag = wordnet.ADV
|
477 |
-
|
478 |
-
if pos_tag:
|
479 |
-
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
480 |
-
if synonyms:
|
481 |
-
synonym = synonyms[0] # Just using the first synonym for simplicity
|
482 |
-
if token.pos_ == "VERB":
|
483 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
484 |
-
synonym = synonym + 'ing'
|
485 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
486 |
-
synonym = synonym + 'ed'
|
487 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
488 |
-
synonym = synonym + 's'
|
489 |
-
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
490 |
-
synonym += 's' if not synonym.endswith('s') else ""
|
491 |
-
rephrased_text.append(synonym)
|
492 |
-
else:
|
493 |
-
rephrased_text.append(token.text)
|
494 |
-
else:
|
495 |
-
rephrased_text.append(token.text)
|
496 |
-
|
497 |
-
return ' '.join(rephrased_text)
|
498 |
-
|
499 |
-
# Function to paraphrase and correct grammar with enhanced accuracy
|
500 |
-
def paraphrase_and_correct(text):
|
501 |
-
# Remove meaningless or redundant words first
|
502 |
-
cleaned_text = remove_redundant_words(text)
|
503 |
-
|
504 |
-
# Capitalize sentences and nouns
|
505 |
-
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
506 |
-
|
507 |
-
# Correct tense and singular/plural errors
|
508 |
-
paraphrased_text = correct_tense_errors(paraphrased_text)
|
509 |
-
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
510 |
-
paraphrased_text = correct_article_errors(paraphrased_text)
|
511 |
-
paraphrased_text = correct_double_negatives(paraphrased_text)
|
512 |
-
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
513 |
-
|
514 |
-
# Correct spelling and punctuation
|
515 |
-
paraphrased_text = correct_spelling(paraphrased_text)
|
516 |
-
paraphrased_text = correct_punctuation(paraphrased_text)
|
517 |
-
paraphrased_text = handle_possessives(paraphrased_text) # Handle possessives
|
518 |
-
|
519 |
-
# Rephrase with synonyms
|
520 |
-
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
521 |
-
|
522 |
-
# Force capitalization of the first letter of each sentence
|
523 |
-
final_text = force_first_letter_capital(paraphrased_text)
|
524 |
|
525 |
return final_text
|
526 |
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
|
|
246 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
247 |
|
248 |
# Force capitalization of the first letter of each sentence
|
249 |
+
final_text = capitalize_sentences_and_nouns(paraphrased_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
return final_text
|
252 |
|