Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet | |
import language_check # Use language-check instead of language-tool-python | |
from gensim import downloader as api | |
# Ensure necessary NLTK data is downloaded | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Ensure the spaCy model is installed | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Load a smaller Word2Vec model from Gensim's pre-trained models | |
word_vectors = api.load("glove-wiki-gigaword-50") | |
# Check for GPU and set the device accordingly | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load AI Detector model and tokenizer from Hugging Face (DistilBERT) | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) | |