sashtech's picture
Update app.py
6ba2176 verified
raw
history blame
3.52 kB
# Import dependencies
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import nltk
from nltk.corpus import wordnet
import spacy
import subprocess
from gensim.models import KeyedVectors
from gensim import downloader as api
from nltk.tokenize import word_tokenize
# Download NLTK data (if not already downloaded)
nltk.download('punkt')
nltk.download('stopwords')
# Ensure the spaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Load a smaller Word2Vec model from Gensim's pre-trained models
word_vectors = api.load("glove-wiki-gigaword-50")
# Check for GPU and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load AI Detector model and tokenizer from Hugging Face (DistilBERT)
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
# AI detection function using DistilBERT
def detect_ai_generated(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.softmax(outputs.logits, dim=1)
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
return f"AI-Generated Content Probability: {ai_probability:.2f}%"
# Function to get synonyms using Gensim Word2Vec
def get_synonyms_gensim(word):
try:
synonyms = word_vectors.most_similar(positive=[word], topn=5)
return [synonym[0] for synonym in synonyms]
except KeyError:
return []
# Paraphrasing function using Gensim for synonym replacement
def paraphrase_with_gensim(text):
words = word_tokenize(text)
paraphrased_words = []
for word in words:
synonyms = get_synonyms_gensim(word.lower())
if synonyms:
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(word)
return ' '.join(paraphrased_words)
# Paraphrasing function using spaCy for synonym replacement
def paraphrase_with_spacy(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
synonyms = get_synonyms_gensim(token.text.lower())
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}: # Only replace certain types of words
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(token.text)
return ' '.join(paraphrased_words)
# Gradio interface definition
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
text_input = gr.Textbox(lines=5, label="Input Text")
detect_button = gr.Button("AI Detection")
paraphrase_gensim_button = gr.Button("Paraphrase with Gensim")
paraphrase_spacy_button = gr.Button("Paraphrase with spaCy")
with gr.Column():
output_text = gr.Textbox(label="Output")
detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text)
paraphrase_gensim_button.click(paraphrase_with_gensim, inputs=text_input, outputs=output_text)
paraphrase_spacy_button.click(paraphrase_with_spacy, inputs=text_input, outputs=output_text)
# Launch the Gradio app
interface.launch(debug=False)