sashtech's picture
Update app.py
251629d verified
raw
history blame
5.15 kB
import gradio as gr
import torch
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from gensim import downloader as api
from gramformer import Gramformer
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the spaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Load a smaller Word2Vec model from Gensim's pre-trained models
word_vectors = api.load("glove-wiki-gigaword-50")
# Check for GPU and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load Gramformer for grammar correction (model 2 for correction)
gf = Gramformer(models=2, use_gpu=torch.cuda.is_available())
# AI detection model and tokenizer remain the same as before
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer_ai = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
model_ai = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
# AI detection function using DistilBERT
def detect_ai_generated(text):
inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model_ai(**inputs)
probabilities = torch.softmax(outputs.logits, dim=1)
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
return f"AI-Generated Content Probability: {ai_probability * 100:.2f}%"
# Function to get synonyms using NLTK WordNet
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
# Function to check and correct tenses and verbs using spaCy
def check_tense_and_correct(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == 'VERB':
tense = token.tag_
if tense == 'VBZ':
corrected_text.append(token.lemma_)
elif tense == 'VBD':
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start:
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN":
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Paraphrasing function using spaCy and NLTK
def paraphrase_with_spacy_nltk(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
pos = None
if token.pos_ in {"NOUN"}:
pos = wordnet.NOUN
elif token.pos_ in {"VERB"}:
pos = wordnet.VERB
elif token.pos_ in {"ADJ"}:
pos = wordnet.ADJ
elif token.pos_ in {"ADV"}:
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(token.text)
paraphrased_sentence = ' '.join(paraphrased_words)
corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence)
return corrected_text
# Function to correct grammar using Gramformer
def correct_grammar(text):
corrected_sentences = gf.correct(text)
return corrected_sentences[0] if corrected_sentences else text
# Combined function: Paraphrase -> Tense Check -> Capitalization -> Grammar Correction
def paraphrase_and_correct(text):
paraphrased_text = paraphrase_with_spacy_nltk(text)
tense_checked_text = check_tense_and_correct(paraphrased_text)
capitalized_text = capitalize_sentences_and_nouns(tense_checked_text)
final_text = correct_grammar(capitalized_text)
return final_text
# Gradio interface definition
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
text_input = gr.Textbox(lines=5, label="Input Text")
detect_button = gr.Button("AI Detection")
paraphrase_button = gr.Button("Paraphrase & Correct")
with gr.Column():
output_text = gr.Textbox(label="Output")
detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text)
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
# Launch the Gradio app
interface.launch(debug=False)