from transformers import T5Tokenizer, T5ForConditionalGeneration import torch # Load the T5 tokenizer and model model_name = "t5-small" # You can use any T5 model available tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) # Example function to use the model def summarize(text): # Tokenize the input text inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=512, truncation=True) # Generate summary outputs = model.generate(inputs, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True) summary = tokenizer.decode(outputs[0], skip_special_tokens=True) return summary # Example usage text_to_summarize = "Your input text goes here." print(summarize(text_to_summarize))