File size: 2,430 Bytes
aef1d09
001ebc6
 
 
 
 
 
 
 
aef1d09
001ebc6
c8228aa
aef1d09
001ebc6
 
 
 
 
 
 
 
 
 
 
 
c8228aa
001ebc6
aef1d09
 
 
 
001ebc6
 
 
aef1d09
 
001ebc6
aef1d09
001ebc6
 
 
 
547ab93
c66ec38
 
001ebc6
 
 
 
6d97ae5
001ebc6
 
 
 
 
 
 
 
 
aef1d09
001ebc6
 
 
c66ec38
 
 
001ebc6
6d97ae5
dee1a4f
aef1d09
6d97ae5
 
001ebc6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
####### Section 1 ###################
from PIL import Image
import numpy as np
import cv2
import requests
import face_recognition
import os
import streamlit as st

####### Section 2 ###################
p1 = "sarwan.jpg"
p2 = "rattantata.png"
p3 = "Ravinder.jpg"

st.title("Face Recognition ")
Images     = []
classnames = []

# read images and train the face_recognition package
img1 = cv2.imread(p1)
Images.append(img1)
classnames.append("Sarwan")

img2 = cv2.imread(p2)
Images.append(img2)
classnames.append("Rattan Tata")

img3 = cv2.imread(p3)
Images.append(img3)
classnames.append("Ravinder kaur")

# Load images for face recognition
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]


####### Section 3 ################### 
# Take picture using the camera 
img_file_buffer = st.camera_input("Take Your picture")

# recognise the face in the uploaded image 
if img_file_buffer is not None:
    test_image = Image.open(img_file_buffer)
    image  = np.asarray(test_image)
    image = image.copy()
    
    imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25)
    imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
    facesCurFrame   = face_recognition.face_locations(imgS)
    encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
    faceMatchedflag = 0
    # run looop to find match in encodeListknown  list
    for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
        # Assuming that encodeListknown is defined and populated in your code
        matches = face_recognition.compare_faces(encodeListknown, encodeFace)
        faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
        matchIndex = np.argmin(faceDis)

        if matches[matchIndex]:
            name = classnames[matchIndex].upper()
            #st.write (name)
            # show the name on image to user 
            y1, x2, y2, x1 = faceLoc
            y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
            cv2.rectangle(image , (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.rectangle(image , (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
            cv2.putText(image , name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)

            faceMatchedflag = 1
     
    st.image(image , use_column_width=True, output_format="PNG")       
            
    if(faceMatchedflag == 0) : 
        st.warning("No faces detected in the image.")