File size: 3,302 Bytes
b55d767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
import torch.nn as nn

from utmosv2.dataset._utils import get_dataset_num
from utmosv2.model import MultiSpecExtModel, MultiSpecModelV2, SSLExtModel


class SSLMultiSpecExtModelV1(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg
        self.ssl = SSLExtModel(cfg)
        self.spec_long = MultiSpecModelV2(cfg)
        self.ssl.load_state_dict(
            torch.load(
                f"outputs/{cfg.model.ssl_spec.ssl_weight}/fold{cfg.now_fold}_s{cfg.split.seed}_best_model.pth"
            )
        )
        self.spec_long.load_state_dict(
            torch.load(
                f"outputs/{cfg.model.ssl_spec.spec_weight}/fold{cfg.now_fold}_s{cfg.split.seed}_best_model.pth"
            )
        )
        if cfg.model.ssl_spec.freeze:
            for param in self.ssl.parameters():
                param.requires_grad = False
            for param in self.spec_long.parameters():
                param.requires_grad = False
        ssl_input = self.ssl.fc.in_features
        spec_long_input = self.spec_long.fc.in_features
        self.ssl.fc = nn.Identity()
        self.spec_long.fc = nn.Identity()

        self.num_dataset = get_dataset_num(cfg)

        self.fc = nn.Linear(
            ssl_input + spec_long_input + self.num_dataset,
            cfg.model.ssl_spec.num_classes,
        )

    def forward(self, x1, x2, d):
        x1 = self.ssl(x1, torch.zeros(x1.shape[0], self.num_dataset).to(x1.device))
        x2 = self.spec_long(x2)
        x = torch.cat([x1, x2, d], dim=1)
        x = self.fc(x)
        return x


class SSLMultiSpecExtModelV2(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg
        self.ssl = SSLExtModel(cfg)
        self.spec_long = MultiSpecExtModel(cfg)
        if cfg.model.ssl_spec.ssl_weight is not None and cfg.phase == "train":
            self.ssl.load_state_dict(
                torch.load(
                    f"outputs/{cfg.model.ssl_spec.ssl_weight}/fold{cfg.now_fold}_s{cfg.split.seed}_best_model.pth"
                )
            )
        if cfg.model.ssl_spec.spec_weight is not None and cfg.phase == "train":
            self.spec_long.load_state_dict(
                torch.load(
                    f"outputs/{cfg.model.ssl_spec.spec_weight}/fold{cfg.now_fold}_s{cfg.split.seed}_best_model.pth"
                )
            )
        if cfg.model.ssl_spec.freeze:
            for param in self.ssl.parameters():
                param.requires_grad = False
            for param in self.spec_long.parameters():
                param.requires_grad = False
        ssl_input = self.ssl.fc.in_features
        spec_long_input = self.spec_long.fc.in_features
        self.ssl.fc = nn.Identity()
        self.spec_long.fc = nn.Identity()

        self.num_dataset = get_dataset_num(cfg)

        self.fc = nn.Linear(
            ssl_input + spec_long_input + self.num_dataset,
            cfg.model.ssl_spec.num_classes,
        )

    def forward(self, x1, x2, d):
        x1 = self.ssl(x1, torch.zeros(x1.shape[0], self.num_dataset).to(x1.device))
        x2 = self.spec_long(
            x2, torch.zeros(x1.shape[0], self.num_dataset).to(x1.device)
        )
        x = torch.cat([x1, x2, d], dim=1)
        x = self.fc(x)
        return x