import gradio as gr import cv2 import numpy as np from PIL import Image from keras.preprocessing import image import tensorflow as tf #predict function model = tf.keras.models.load_model(r"model.keras") def predict(img): print("hi") print("hi") Retina_classes = ['DR', 'No_DR'] img = np.resize(img,(224,224,3)) img = np.expand_dims(img, axis=0) prediction=model.predict(img)[0] print(prediction) return {Retina_classes[i]: float(prediction[i]) for i in range(2)} #Just four line implementation image = gr.Image(label="Upload Here") label = gr.Label(num_top_classes=2) gr.Interface(fn=predict, inputs="image", outputs=label).launch()