added app file
Browse files- .gitattributes +1 -0
- app.py +18 -0
- model_adv.keras +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model_adv.keras filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
pipeline = pipeline(task="image-classification", model="./model_adv.keras")
|
5 |
+
|
6 |
+
def predict(input_img):
|
7 |
+
predictions = pipeline(input_img)
|
8 |
+
return input_img, {p["label"]: p["score"] for p in predictions}
|
9 |
+
|
10 |
+
gradio_app = gr.Interface(
|
11 |
+
predict,
|
12 |
+
inputs=gr.Image(label="Retinopathy score", sources=['upload', 'webcam'], type="pil"),
|
13 |
+
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
14 |
+
title="Retinopathy score",
|
15 |
+
)
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
gradio_app.launch()
|
model_adv.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:361c2c1abedcb62bf6208e525586c5d49ba573ada865e09b274285469c62d337
|
3 |
+
size 226140628
|