|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
from keras.preprocessing import image |
|
import tensorflow as tf |
|
|
|
model = tf.keras.models.load_model(r"model.keras") |
|
|
|
def predict(img): |
|
print("hi") |
|
|
|
print("hi") |
|
Retina_classes = ['DR', 'No_DR'] |
|
img = np.resize(img,(224,224,3)) |
|
img = np.expand_dims(img, axis=0) |
|
prediction=model.predict(img)[0] |
|
print(prediction) |
|
return {Retina_classes[i]: float(prediction[i]) for i in range(2)} |
|
|
|
image = gr.Image(label="Upload Here") |
|
label = gr.Label(num_top_classes=2) |
|
gr.Interface(fn=predict, inputs="image", outputs=label).launch() |