dbrmobdel / app.py
sarth123's picture
Update app.py
e46e50a verified
raw
history blame contribute delete
667 Bytes
import gradio as gr
import cv2
import numpy as np
from PIL import Image
from keras.preprocessing import image
import tensorflow as tf
#predict function
model = tf.keras.models.load_model(r"model.keras")
def predict(img):
print("hi")
print("hi")
Retina_classes = ['DR', 'No_DR']
img = np.resize(img,(224,224,3))
img = np.expand_dims(img, axis=0)
prediction=model.predict(img)[0]
print(prediction)
return {Retina_classes[i]: float(prediction[i]) for i in range(2)}
#Just four line implementation
image = gr.Image(label="Upload Here")
label = gr.Label(num_top_classes=2)
gr.Interface(fn=predict, inputs="image", outputs=label).launch()