Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline | |
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v2.0") | |
def predict_teacher_course(feedback): | |
sequence_to_classify = feedback | |
candidate_labels = ["teacher", "course"] | |
output = classifier(sequence_to_classify, candidate_labels, multi_label=False) | |
return str(output['labels'][0]) | |
def predict_sentiment(feedback): | |
sequence_to_classify = feedback | |
candidate_labels = ["positive", "negative", "neutral"] | |
output = classifier(sequence_to_classify, candidate_labels, multi_label=False) | |
return str(output['labels'][0]) | |
def predict_teacher_aspect(feedback): | |
sequence_to_classify = feedback | |
candidate_labels = ['general', 'teaching skills', 'behaviour', 'knowledge', 'experience', 'assessment'] | |
output = classifier(sequence_to_classify, candidate_labels, multi_label=False) | |
return str(output['labels'][0]) | |
def predict_course_aspect(feedback): | |
sequence_to_classify = feedback | |
candidate_labels = ['relevancy', 'general', 'content', 'learning material', 'pace'] | |
output = classifier(sequence_to_classify, candidate_labels, multi_label=False) | |
return str(output['labels'][0]) | |
# Streamlit app layout | |
st.set_page_config(page_title="Aspect-based Sentiment Anlaysis of Student Feedback", layout="centered", initial_sidebar_state="auto") | |
st.markdown(""" | |
#### This application analyzes the student feedback to determine whether it is about a teacher or a course, detects sentiment, and identifies important teacher or course aspects. | |
""") | |
# Get user input | |
user_input = st.text_area("Enter the feedback or comments for analysis:", height=200) | |
if st.button("Analyze Text"): | |
if user_input.strip(): | |
# Predict whether it's about teacher or course | |
type_result = predict_teacher_course(user_input) | |
sentiment_result = predict_sentiment(user_input) | |
if type_result == 'teacher': | |
aspect_result = predict_teacher_aspect(user_input) | |
else: | |
aspect_result = predict_course_aspect(user_input) | |
# Display the results in a nice way | |
st.subheader("Analysis Results") | |
st.markdown(f"**Type:** `{type_result}`") | |
st.markdown(f"**Sentiment:** `{sentiment_result}`") | |
st.write(f"**Aspect:** `{aspect_result}`") | |
else: | |
st.error("Please enter some text for analysis.") | |
# Add a footer | |
st.markdown("---") | |
st.markdown("**Developed by Sarang Shaikh**") | |
st.markdown(""" | |
Feel free to reach out for more information or suggestions! | |
""") |