import gradio as gr from transformers import AutoTokenizer import torch from fastai.text.all import * from blurr.text.data.all import * from blurr.text.modeling.all import * # Define the path to your model and dataloaders model_path = "origin-classifier-stage-2.pkl" dls_path = "dls_origin-classifier_v1.pkl" learner_inf = load_learner(model_path) dls = torch.load(dls_path) class_label_mapping = {label: idx for idx, label in enumerate(learner_inf.dls.vocab)} def predict_text(text): prediction = learner_inf.blurr_predict(text)[0] predicted_class_index = prediction['class_index'] predicted_class_label = list(class_label_mapping.keys())[list(class_label_mapping.values()).index(predicted_class_index)] predicted_class_probability = prediction['probs'][predicted_class_index] return f"Label: {predicted_class_label}, Probability: {predicted_class_probability * 100:.2f}%" iface = gr.Interface( fn=predict_text, inputs="text", outputs="text", title="Food Origin Classification App", description="Enter a Recipe, and it will predict the class label.", ) iface.launch()