|
import gradio as gr |
|
from transformers import AutoTokenizer |
|
import torch |
|
from fastai.text.all import * |
|
from blurr.text.data.all import * |
|
from blurr.text.modeling.all import * |
|
|
|
|
|
model_path = "origin-classifier-stage-2.pkl" |
|
dls_path = "dls_origin-classifier_v1.pkl" |
|
|
|
learner_inf = load_learner(model_path) |
|
|
|
dls = torch.load(dls_path) |
|
|
|
class_label_mapping = {label: idx for idx, label in enumerate(learner_inf.dls.vocab)} |
|
|
|
def predict_text(text): |
|
prediction = learner_inf.blurr_predict(text) |
|
predicted_probs = prediction[0]['scores'] |
|
predicted_labels = prediction[0]['class_labels'] |
|
result = {label: f"{prob*100:.2f}%" for label, prob in zip(predicted_labels, predicted_probs)} |
|
return result |
|
|
|
iface = gr.Interface( |
|
fn=predict_text, |
|
inputs=gr.inputs.Textbox(lines=2, placeholder='Enter Recipe Here...'), |
|
outputs=gr.outputs.Label(num_top_classes=3), |
|
title="Food Origin Classification App", |
|
description="Enter a Recipe, and it will predict the class label.", |
|
) |
|
|
|
iface.launch() |