File size: 1,135 Bytes
1361040 90ff4ab 1361040 a058b69 1361040 a058b69 1361040 4829bea dcf1192 1361040 72ef52b 903663a 82dd379 1361040 3b5af6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from transformers import AutoTokenizer
import torch
from fastai.text.all import *
from blurr.text.data.all import *
from blurr.text.modeling.all import *
# Define the path to your model and dataloaders
model_path = "origin-classifier-stage-2.pkl"
dls_path = "dls_origin-classifier_v1.pkl"
learner_inf = load_learner(model_path)
dls = torch.load(dls_path)
class_label_mapping = {label: idx for idx, label in enumerate(learner_inf.dls.vocab)}
def predict_text(text):
prediction = learner_inf.blurr_predict(text)[0]
predicted_class_index = prediction['class_index']
predicted_class_label = list(class_label_mapping.keys())[list(class_label_mapping.values()).index(predicted_class_index)]
predicted_class_probability = prediction['probs'][predicted_class_index]
return {predicted_class_label: float(predicted_class_probability)}
iface = gr.Interface(
fn=predict_text,
inputs="text",
outputs=gr.outputs.JSON(label="Predicted Class and Probability"),
title="Food Origin Classification App",
description="Enter a Recipe, and it will predict the class label.",
)
iface.launch() |