sanjeevbora commited on
Commit
d47f253
·
verified ·
1 Parent(s): b3d66e3

create app.py

Browse files
Files changed (1) hide show
  1. app.py +108 -0
app.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
3
+ from llama_index.llms.huggingface import HuggingFaceInferenceAPI
4
+ from dotenv import load_dotenv
5
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
6
+ from llama_index.core import Settings
7
+ import os
8
+ import base64
9
+
10
+ # Load environment variables
11
+ load_dotenv()
12
+
13
+ # Configure the Llama index settings
14
+ Settings.llm = HuggingFaceInferenceAPI(
15
+ model_name="nltpt/Llama-3.2-3B-Instruct",
16
+ tokenizer_name="nltpt/Llama-3.2-3B-Instruct",
17
+ # model_name="google/gemma-1.1-7b-it",
18
+ # tokenizer_name="google/gemma-1.1-7b-it",
19
+ context_window=3000,
20
+ token=os.getenv("HF_TOKEN"),
21
+ max_new_tokens=512,
22
+ generate_kwargs={"temperature": 0.1},
23
+ )
24
+ Settings.embed_model = HuggingFaceEmbedding(
25
+ model_name="BAAI/bge-small-en-v1.5"
26
+ )
27
+
28
+ # Define the directory for persistent storage and data
29
+ PERSIST_DIR = "./db"
30
+ DATA_DIR = "data"
31
+
32
+ # Ensure data directory exists
33
+ os.makedirs(DATA_DIR, exist_ok=True)
34
+ os.makedirs(PERSIST_DIR, exist_ok=True)
35
+
36
+ def displayPDF(file):
37
+ with open(file, "rb") as f:
38
+ base64_pdf = base64.b64encode(f.read()).decode('utf-8')
39
+ pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
40
+ st.markdown(pdf_display, unsafe_allow_html=True)
41
+
42
+ def data_ingestion():
43
+ documents = SimpleDirectoryReader(DATA_DIR).load_data()
44
+ storage_context = StorageContext.from_defaults()
45
+ index = VectorStoreIndex.from_documents(documents)
46
+ index.storage_context.persist(persist_dir=PERSIST_DIR)
47
+
48
+ def handle_query(query):
49
+ storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
50
+ index = load_index_from_storage(storage_context)
51
+ chat_text_qa_msgs = [
52
+ (
53
+ "user",
54
+ """You are a Q&A assistant. Your main goal is to provide answers as accurately as possible, based on the context of the document provided. If the question does not match the context or is outside the scope of the document, advise the user to ask questions that are relevant to the document.
55
+ Context:
56
+ {context_str}
57
+ Question:
58
+ {query_str}
59
+ """
60
+ )
61
+ ]
62
+
63
+ text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
64
+
65
+ query_engine = index.as_query_engine(text_qa_template=text_qa_template)
66
+ answer = query_engine.query(query)
67
+
68
+ if hasattr(answer, 'response'):
69
+ return answer.response
70
+ elif isinstance(answer, dict) and 'response' in answer:
71
+ return answer['response']
72
+ else:
73
+ return "Sorry, I couldn't find an answer."
74
+
75
+
76
+ # Streamlit app initialization
77
+ st.title("(PDF) Information and Inference🗞️")
78
+ st.markdown("Retrieval-Augmented Generation")
79
+ st.markdown("Start chat ...🚀")
80
+
81
+ if 'messages' not in st.session_state:
82
+ st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload PDF files and ask me anything about their content.'}]
83
+
84
+ with st.sidebar:
85
+ st.title("Menu:")
86
+ uploaded_files = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", type="pdf", accept_multiple_files=True)
87
+
88
+ if st.button("Submit & Process"):
89
+ if uploaded_files:
90
+ with st.spinner("Processing..."):
91
+ for uploaded_file in uploaded_files:
92
+ filepath = os.path.join(DATA_DIR, uploaded_file.name)
93
+ with open(filepath, "wb") as f:
94
+ f.write(uploaded_file.getbuffer())
95
+ data_ingestion() # Process PDFs after they are uploaded
96
+ st.success("Done")
97
+ else:
98
+ st.warning("Please upload at least one PDF file.")
99
+
100
+ user_prompt = st.chat_input("Ask me anything about the content of the PDF(s):")
101
+ if user_prompt:
102
+ st.session_state.messages.append({'role': 'user', "content": user_prompt})
103
+ response = handle_query(user_prompt)
104
+ st.session_state.messages.append({'role': 'assistant', "content": response})
105
+
106
+ for message in st.session_state.messages:
107
+ with st.chat_message(message['role']):
108
+ st.write(message['content'])