sanjeevbora's picture
Update app.py
efb9187 verified
raw
history blame
3.41 kB
import gradio as gr
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from dotenv import load_dotenv
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
import os
import base64
# Load environment variables
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="nltpt/Llama-3.2-3B-Instruct",
tokenizer_name="nltpt/Llama-3.2-3B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "./db"
DATA_DIR = "data"
# Ensure data directory exists
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
def displayPDF(file):
with open(file, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
return pdf_display
def data_ingestion(files):
for file in files:
filepath = os.path.join(DATA_DIR, file.name)
with open(filepath, "wb") as f:
f.write(file.getbuffer())
documents = SimpleDirectoryReader(DATA_DIR).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
chat_text_qa_msgs = [
(
"user",
"""You are a Q&A assistant. Your main goal is to provide answers as accurately as possible, based on the context of the document provided. If the question does not match the context or is outside the scope of the document, advise the user to ask questions that are relevant to the document.
Context:
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
query_engine = index.as_query_engine(text_qa_template=text_qa_template)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
return answer.response
elif isinstance(answer, dict) and 'response' in answer:
return answer['response']
else:
return "Sorry, I couldn't find an answer."
# Gradio app setup
def gradio_app(files, user_query):
if files:
data_ingestion(files) # Process PDFs after they are uploaded
response = handle_query(user_query)
return response
return "Please upload at least one PDF file."
interface = gr.Interface(
fn=gradio_app,
inputs=[
gr.File(label="Upload PDF Files", type="file", file_count="multiple"),
gr.Textbox(label="Ask me anything about the content of the PDF(s):")
],
outputs="text",
title="(PDF) Information and Inference🗞️",
description="Retrieval-Augmented Generation. Start chat ...🚀"
)
interface.launch()