import subprocess import gradio as gr from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.llms import HuggingFacePipeline from langchain.chains import RetrievalQA from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM from langchain_community.document_loaders import DirectoryLoader import torch import re import requests from urllib.parse import urlencode, urlparse, parse_qs import spaces # Step 1: Run the setup script script_path = './setup.sh' # Adjust the path if needed # Run the script exit_code = subprocess.call(['bash', script_path]) if exit_code == 0: print("Script executed successfully.") else: print(f"Script failed with exit code {exit_code}.") # Initialize embeddings and ChromaDB model_name = "sentence-transformers/all-mpnet-base-v2" device = "cuda" if torch.cuda.is_available() else "cpu" model_kwargs = {"device": device} embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True) docs = loader.load() vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db") books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings) books_db_client = books_db.as_retriever() # Initialize the model and tokenizer model_name = "stabilityai/stablelm-zephyr-3b" model_config = AutoConfig.from_pretrained(model_name, max_new_tokens=1024) model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, config=model_config, device_map=device, ) tokenizer = AutoTokenizer.from_pretrained(model_name) query_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, return_full_text=True, torch_dtype=torch.float16, device_map=device, do_sample=True, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=256 ) llm = HuggingFacePipeline(pipeline=query_pipeline) books_db_client_retriever = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=books_db_client, verbose=True ) # OAuth Configuration TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee' CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5' CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW' REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/' AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize" TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token" params = { 'client_id': CLIENT_ID, 'response_type': 'code', 'redirect_uri': REDIRECT_URI, 'response_mode': 'query', 'scope': 'User.Read', 'state': '12345', 'prompt': 'login' # This ensures the login prompt appears even if already logged in } # Construct the login URL login_url = f"{AUTH_URL}?{urlencode(params)}" def show_login_button(): return f'Click here to login with Microsoft' # Function to exchange auth code for token def exchange_code_for_token(auth_code): data = { 'grant_type': 'authorization_code', 'client_id': CLIENT_ID, 'client_secret': CLIENT_SECRET, 'code': auth_code, 'redirect_uri': REDIRECT_URI } response = requests.post(TOKEN_URL, data=data) if response.status_code == 200: token_data = response.json() access_token = token_data.get('access_token') return access_token else: return None # Function to handle redirect URL and extract the auth code def handle_redirect(url): parsed_url = urlparse(url) query_params = parse_qs(parsed_url.query) auth_code = query_params.get('code') if auth_code: token = exchange_code_for_token(auth_code[0]) if token: return "Logged in", True # Successfully logged in return "Login failed", False # Function to retrieve answer using the RAG system @spaces.GPU(duration=60) def test_rag(query): books_retriever = books_db_client_retriever.run(query) # Extract the relevant answer using regex corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL) if corrected_text_match: corrected_text_books = corrected_text_match.group(1).strip() else: corrected_text_books = "No helpful answer found." return corrected_text_books # Define the Gradio interface def chat(query, history=None): if history is None: history = [] if query: answer = test_rag(query) history.append((query, answer)) return history, "" # Clear input after submission # Function to clear input text def clear_input(): return "", # Return empty string to clear input field # Gradio Interface with gr.Blocks() as interface: with gr.Tab("Login"): gr.Markdown("## Login Page") login_link = gr.HTML(show_login_button()) # Hidden textbox for redirect URL redirect_url_input = gr.Textbox(label="Redirect URL", visible=True) # URL from the Microsoft redirect status_label = gr.Label(value="Not logged in") # Label to show login status def on_redirect(redirect_url): # Extract and exchange token status, logged_in = handle_redirect(redirect_url) if logged_in: return gr.update(visible=False), status, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) else: return gr.update(visible=True), status, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) # Handle redirect and switch to chatbot page upon login redirect_url_input.change( on_redirect, inputs=[redirect_url_input], outputs=[redirect_url_input, status_label, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Chatbot.update(visible=True)], show_progress=True ) with gr.Tab("Chatbot"): gr.Markdown("## Chatbot Page") # Components for chat (initially hidden) input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False) submit_btn = gr.Button("Submit", visible=False) chat_history = gr.Chatbot(label="Chat History", visible=False) # Chat submission submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box]) interface.launch()