import gradio as gr from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.llms import HuggingFacePipeline from langchain.chains import RetrievalQA from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM from langchain_community.document_loaders import DirectoryLoader import torch import re import transformers import spaces import requests from urllib.parse import urlencode # Initialize embeddings and ChromaDB model_name = "sentence-transformers/all-mpnet-base-v2" device = "cuda" if torch.cuda.is_available() else "cpu" model_kwargs = {"device": device} embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True) docs = loader.load() vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db") books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings) books_db_client = books_db.as_retriever() # Initialize the model and tokenizer model_name = "stabilityai/stablelm-zephyr-3b" model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024) model = transformers.AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, config=model_config, device_map=device, ) tokenizer = AutoTokenizer.from_pretrained(model_name) query_pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, return_full_text=True, torch_dtype=torch.float16, device_map=device, do_sample=True, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=256 ) llm = HuggingFacePipeline(pipeline=query_pipeline) books_db_client_retriever = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=books_db_client, verbose=True ) # OAuth Configuration TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee' CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5' CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW' REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/' AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize" TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token" params = { 'client_id': CLIENT_ID, 'response_type': 'code', 'redirect_uri': REDIRECT_URI, 'response_mode': 'query', 'scope': 'User.Read', 'state': '12345' # Optional state parameter } # Construct the login URL login_url = f"{AUTH_URL}?{urlencode(params)}" # Gradio interface def show_login_button(): return f'Click here to login with Microsoft' # Dummy function to simulate token validation (you will replace this with actual validation) def is_logged_in(token): # Check if the token exists (or check if it's valid) return token is not None # Gradio interface def check_login(status): # If logged in, show the chatbot interface, otherwise show login link if status: return gr.update(visible=True), gr.update(visible=True) else: return gr.update(visible=False), gr.update(visible=False) # Function to exchange authorization code for access token def exchange_code_for_token(auth_code): data = { 'grant_type': 'authorization_code', 'client_id': CLIENT_ID, 'client_secret': CLIENT_SECRET, 'code': auth_code, 'redirect_uri': REDIRECT_URI } response = requests.post(TOKEN_URL, data=data) if response.status_code == 200: token_data = response.json() access_token = token_data.get('access_token') return access_token else: return None def login_user(auth_code): # Exchange the authorization code for an access token token = exchange_code_for_token(auth_code) if token: return token else: return None # Function to retrieve answer using the RAG system @spaces.GPU(duration=60) def test_rag(query): books_retriever = books_db_client_retriever.run(query) # Extract the relevant answer using regex corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL) if corrected_text_match: corrected_text_books = corrected_text_match.group(1).strip() else: corrected_text_books = "No helpful answer found." return corrected_text_books # Define the Gradio interface def chat(query, history=None): if history is None: history = [] if query: answer = test_rag(query) history.append((query, answer)) return history, "" # Clear input after submission # Function to clear input text def clear_input(): return "", # Return empty string to clear input field with gr.Blocks() as interface: gr.Markdown("## RAG Chatbot") gr.Markdown("Please log in to continue.") # Custom HTML to show login link login_link = gr.HTML(f'Click here to login with Microsoft') # Login button to simulate the login process login_button = gr.Button("Login") # Components for chat (initially hidden) input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False) submit_btn = gr.Button("Submit", visible=False) chat_history = gr.Chatbot(label="Chat History", visible=False) # Handle login button click login_button.click( login_user, inputs=[], outputs=[login_button], # You can also update the UI to show login status queue=False ).then( lambda token: check_login(is_logged_in(token)), inputs=[], outputs=[input_box, submit_btn] ) # Input submission and chat handling submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box]) interface.launch()