Spaces:
Paused
Paused
updated
Browse files
app.py
CHANGED
@@ -1,15 +1,3 @@
|
|
1 |
-
import subprocess
|
2 |
-
|
3 |
-
script_path = './setup.sh' # Adjust the path if needed
|
4 |
-
|
5 |
-
# Run the script
|
6 |
-
exit_code = subprocess.call(['bash', script_path])
|
7 |
-
|
8 |
-
if exit_code == 0:
|
9 |
-
print("Script executed successfully.")
|
10 |
-
else:
|
11 |
-
print(f"Script failed with exit code {exit_code}.")
|
12 |
-
|
13 |
import gradio as gr
|
14 |
from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
from langchain.vectorstores import Chroma
|
@@ -21,8 +9,6 @@ import torch
|
|
21 |
import re
|
22 |
import transformers
|
23 |
import spaces
|
24 |
-
import requests
|
25 |
-
from urllib.parse import urlencode
|
26 |
|
27 |
# Initialize embeddings and ChromaDB
|
28 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
@@ -39,11 +25,19 @@ books_db_client = books_db.as_retriever()
|
|
39 |
# Initialize the model and tokenizer
|
40 |
model_name = "stabilityai/stablelm-zephyr-3b"
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
43 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
44 |
model_name,
|
45 |
trust_remote_code=True,
|
46 |
config=model_config,
|
|
|
47 |
device_map=device,
|
48 |
)
|
49 |
|
@@ -72,71 +66,6 @@ books_db_client_retriever = RetrievalQA.from_chain_type(
|
|
72 |
verbose=True
|
73 |
)
|
74 |
|
75 |
-
# OAuth Configuration
|
76 |
-
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
|
77 |
-
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
|
78 |
-
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
|
79 |
-
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
|
80 |
-
AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize"
|
81 |
-
TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token"
|
82 |
-
|
83 |
-
params = {
|
84 |
-
'client_id': CLIENT_ID,
|
85 |
-
'response_type': 'code',
|
86 |
-
'redirect_uri': REDIRECT_URI,
|
87 |
-
'response_mode': 'query',
|
88 |
-
'scope': 'User.Read',
|
89 |
-
'state': '12345' # Optional state parameter
|
90 |
-
}
|
91 |
-
|
92 |
-
# Construct the login URL
|
93 |
-
login_url = f"{AUTH_URL}?{urlencode(params)}"
|
94 |
-
|
95 |
-
# Gradio interface
|
96 |
-
def show_login_button():
|
97 |
-
return f'<a href="{login_url}" target="_blank">Click here to login with Microsoft</a>'
|
98 |
-
|
99 |
-
# Dummy function to simulate token validation (you will replace this with actual validation)
|
100 |
-
def is_logged_in(token):
|
101 |
-
# Check if the token exists (or check if it's valid)
|
102 |
-
return token is not None
|
103 |
-
|
104 |
-
# Gradio interface
|
105 |
-
def check_login(status):
|
106 |
-
# If logged in, show the chatbot interface, otherwise show login link
|
107 |
-
if status:
|
108 |
-
return gr.update(visible=True), gr.update(visible=True)
|
109 |
-
else:
|
110 |
-
return gr.update(visible=False), gr.update(visible=False)
|
111 |
-
|
112 |
-
# Function to exchange authorization code for access token
|
113 |
-
def exchange_code_for_token(auth_code):
|
114 |
-
data = {
|
115 |
-
'grant_type': 'authorization_code',
|
116 |
-
'client_id': CLIENT_ID,
|
117 |
-
'client_secret': CLIENT_SECRET,
|
118 |
-
'code': auth_code,
|
119 |
-
'redirect_uri': REDIRECT_URI
|
120 |
-
}
|
121 |
-
|
122 |
-
response = requests.post(TOKEN_URL, data=data)
|
123 |
-
|
124 |
-
if response.status_code == 200:
|
125 |
-
token_data = response.json()
|
126 |
-
access_token = token_data.get('access_token')
|
127 |
-
return access_token
|
128 |
-
else:
|
129 |
-
return None
|
130 |
-
|
131 |
-
def login_user(auth_code):
|
132 |
-
# Exchange the authorization code for an access token
|
133 |
-
token = exchange_code_for_token(auth_code)
|
134 |
-
|
135 |
-
if token:
|
136 |
-
return token
|
137 |
-
else:
|
138 |
-
return None
|
139 |
-
|
140 |
# Function to retrieve answer using the RAG system
|
141 |
@spaces.GPU(duration=60)
|
142 |
def test_rag(query):
|
@@ -165,34 +94,18 @@ def chat(query, history=None):
|
|
165 |
def clear_input():
|
166 |
return "", # Return empty string to clear input field
|
167 |
|
|
|
168 |
with gr.Blocks() as interface:
|
169 |
gr.Markdown("## RAG Chatbot")
|
170 |
-
gr.Markdown("
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
login_button = gr.Button("Login")
|
177 |
|
178 |
-
# Components for chat (initially hidden)
|
179 |
-
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
|
180 |
-
submit_btn = gr.Button("Submit", visible=False)
|
181 |
-
chat_history = gr.Chatbot(label="Chat History", visible=False)
|
182 |
-
|
183 |
-
# Handle login button click
|
184 |
-
login_button.click(
|
185 |
-
login_user,
|
186 |
-
inputs=[],
|
187 |
-
outputs=[login_button], # You can also update the UI to show login status
|
188 |
-
queue=False
|
189 |
-
).then(
|
190 |
-
lambda token: check_login(is_logged_in(token)),
|
191 |
-
inputs=[],
|
192 |
-
outputs=[input_box, submit_btn]
|
193 |
-
)
|
194 |
-
|
195 |
-
# Input submission and chat handling
|
196 |
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
|
|
|
|
|
|
|
197 |
|
198 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
from langchain.vectorstores import Chroma
|
|
|
9 |
import re
|
10 |
import transformers
|
11 |
import spaces
|
|
|
|
|
12 |
|
13 |
# Initialize embeddings and ChromaDB
|
14 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
|
|
25 |
# Initialize the model and tokenizer
|
26 |
model_name = "stabilityai/stablelm-zephyr-3b"
|
27 |
|
28 |
+
# bnb_config = transformers.BitsAndBytesConfig(
|
29 |
+
# load_in_4bit=True,
|
30 |
+
# bnb_4bit_quant_type='nf4',
|
31 |
+
# bnb_4bit_use_double_quant=True,
|
32 |
+
# bnb_4bit_compute_dtype=torch.bfloat16
|
33 |
+
# )
|
34 |
+
|
35 |
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
36 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
37 |
model_name,
|
38 |
trust_remote_code=True,
|
39 |
config=model_config,
|
40 |
+
# quantization_config=bnb_config,
|
41 |
device_map=device,
|
42 |
)
|
43 |
|
|
|
66 |
verbose=True
|
67 |
)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
# Function to retrieve answer using the RAG system
|
70 |
@spaces.GPU(duration=60)
|
71 |
def test_rag(query):
|
|
|
94 |
def clear_input():
|
95 |
return "", # Return empty string to clear input field
|
96 |
|
97 |
+
# Gradio interface
|
98 |
with gr.Blocks() as interface:
|
99 |
gr.Markdown("## RAG Chatbot")
|
100 |
+
gr.Markdown("Ask a question and get answers based on retrieved documents.")
|
101 |
|
102 |
+
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...")
|
103 |
+
submit_btn = gr.Button("Submit")
|
104 |
+
# clear_btn = gr.Button("Clear")
|
105 |
+
chat_history = gr.Chatbot(label="Chat History")
|
|
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
|
108 |
+
# clear_btn.click(clear_input, outputs=input_box)
|
109 |
+
|
110 |
+
interface.launch()
|
111 |
|
|