Spaces:
Paused
Paused
import gradio as gr | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.llms import HuggingFacePipeline | |
from langchain.chains import RetrievalQA | |
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM | |
from langchain_community.document_loaders import DirectoryLoader | |
import torch | |
import re | |
import transformers | |
import spaces | |
# Initialize embeddings and ChromaDB | |
model_name = "sentence-transformers/all-mpnet-base-v2" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_kwargs = {"device": device} | |
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) | |
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True) | |
docs = loader.load() | |
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db") | |
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings) | |
books_db_client = books_db.as_retriever() | |
# Initialize the model and tokenizer | |
model_name = "stabilityai/stablelm-zephyr-3b" | |
# bnb_config = transformers.BitsAndBytesConfig( | |
# load_in_4bit=True, | |
# bnb_4bit_quant_type='nf4', | |
# bnb_4bit_use_double_quant=True, | |
# bnb_4bit_compute_dtype=torch.bfloat16 | |
# ) | |
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024) | |
model = transformers.AutoModelForCausalLM.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
config=model_config, | |
# quantization_config=bnb_config, | |
device_map=device, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
query_pipeline = transformers.pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=True, | |
torch_dtype=torch.float16, | |
device_map=device, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9, | |
top_k=50, | |
max_new_tokens=256 | |
) | |
llm = HuggingFacePipeline(pipeline=query_pipeline) | |
books_db_client_retriever = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=books_db_client, | |
verbose=True | |
) | |
# Function to retrieve answer using the RAG system | |
def test_rag(query): | |
books_retriever = books_db_client_retriever.run(query) | |
# Extract the relevant answer using regex | |
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL) | |
if corrected_text_match: | |
corrected_text_books = corrected_text_match.group(1).strip() | |
else: | |
corrected_text_books = "No helpful answer found." | |
return corrected_text_books | |
# Define the Gradio interface | |
def chat(query, history=None): | |
if history is None: | |
history = [] | |
if query: | |
answer = test_rag(query) | |
history.append((query, answer)) | |
return history, "" # Clear input after submission | |
# Function to clear input text | |
def clear_input(): | |
return "", # Return empty string to clear input field | |
# Gradio interface | |
with gr.Blocks() as interface: | |
gr.Markdown("## RAG Chatbot") | |
gr.Markdown("Ask a question and get answers based on retrieved documents.") | |
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...") | |
submit_btn = gr.Button("Submit") | |
# clear_btn = gr.Button("Clear") | |
chat_history = gr.Chatbot(label="Chat History") | |
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box]) | |
# clear_btn.click(clear_input, outputs=input_box) | |
interface.launch() | |