ChatBot / app.py
sanjeevbora's picture
updated app.py
691a1ad verified
raw
history blame
4.49 kB
import os
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
from langchain_community.document_loaders import DirectoryLoader
import torch
import re
import transformers
import spaces
# Initialize embeddings and ChromaDB
model_name = "sentence-transformers/all-mpnet-base-v2"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_kwargs = {"device": device}
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
docs = loader.load()
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db")
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings)
books_db_client = books_db.as_retriever()
# Initialize the model and tokenizer
model_name = "stabilityai/stablelm-zephyr-3b"
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
config=model_config,
device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
query_pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return_full_text=True,
torch_dtype=torch.float16,
device_map=device,
do_sample=True,
temperature=0.7,
top_p=0.9,
top_k=50,
max_new_tokens=256
)
llm = HuggingFacePipeline(pipeline=query_pipeline)
books_db_client_retriever = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=books_db_client,
verbose=True
)
# Function to retrieve answer using the RAG system
@spaces.GPU(duration=60)
def test_rag(query):
books_retriever = books_db_client_retriever.run(query)
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
if corrected_text_match:
corrected_text_books = corrected_text_match.group(1).strip()
else:
corrected_text_books = "No helpful answer found."
return corrected_text_books
TENANT_ID = os.getenv("TENANT_ID")
CLIENT_ID = os.getenv("OAUTH_CLIENT_ID")
CLIENT_SECRET = os.getenv("CLIENT_SECRET")
REDIRECT_URI = os.getenv("SPACE_HOST")
AUTH_URL = os.getenv("AUTH_URL")
TOKEN_URL = os.getenv("TOKEN_URL")
SCOPE = os.getenv("SCOPE")
access_token = None
# OAuth Login Functionality
def oauth_login():
params = {
'client_id': CLIENT_ID,
'response_type': 'code',
'redirect_uri': REDIRECT_URI,
'response_mode': 'query',
'scope': SCOPE,
'state': 'random_state_string' # Optional: Use for security
}
login_url = f"{AUTH_URL}?{urlencode(params)}"
return login_url
# Define the Gradio interface
def chat(query, history=None):
if history is None:
history = []
if query:
answer = test_rag(query)
history.append((query, answer))
return history, "" # Clear input after submission
# Function to clear input text
def clear_input():
return "", # Return empty string to clear input field
# Function to show/hide components based on login status
def on_login(success):
return gr.update(visible=success), gr.update(visible=success)
with gr.Blocks() as interface:
gr.Markdown("## RAG Chatbot")
gr.Markdown("Ask a question and get answers based on retrieved documents.")
# Sign-In Button
login_btn = gr.Button("Sign In with HF")
login_btn.click(lambda: oauth_login(), outputs=None) # Redirect user for OAuth login
# Hidden components initially
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
submit_btn = gr.Button("Submit", visible=False)
chat_history = gr.Chatbot(label="Chat History", visible=False)
# Show components after login
def show_components():
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
# After a successful login, show the input box and buttons
submit_btn.click(show_components, outputs=[input_box, submit_btn, chat_history])
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
interface.launch()