Spaces:
Paused
Paused
# import subprocess | |
import os | |
# # Run setup.sh script before starting the app | |
# subprocess.run(["/bin/bash", "setup.sh"], check=True) | |
os.system('pip install --upgrade pip') | |
os.system('apt-get update && apt-get install -y libmagic1') | |
os.system('pip install -U langchain-community') | |
os.system('pip install --upgrade accelerate') | |
os.system('pip install -i https://pypi.org/simple/ bitsandbytes --upgrade') | |
import gradio as gr | |
import spaces | |
# import fitz # PyMuPDF for extracting text from PDFs | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.docstore.document import Document | |
from langchain.llms import HuggingFacePipeline | |
from langchain.chains import RetrievalQA | |
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM | |
import torch | |
import re | |
import transformers | |
from torch import bfloat16 | |
from langchain_community.document_loaders import DirectoryLoader | |
# Initialize embeddings and ChromaDB | |
model_name = "sentence-transformers/all-mpnet-base-v2" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# device = "cuda" | |
model_kwargs = {"device": device} | |
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) | |
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True) | |
docs = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
all_splits = text_splitter.split_documents(docs) | |
vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="example_chroma_companies") | |
books_db = Chroma(persist_directory="./example_chroma_companies", embedding_function=embeddings) | |
books_db_client = books_db.as_retriever() | |
# Initialize the model and tokenizer | |
model_name = "stabilityai/stablelm-zephyr-3b" | |
# bnb_config = transformers.BitsAndBytesConfig( | |
# load_in_4bit=True, | |
# bnb_4bit_quant_type='nf4', | |
# bnb_4bit_use_double_quant=True, | |
# bnb_4bit_compute_dtype=torch.bfloat16 | |
# ) | |
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024) | |
model = transformers.AutoModelForCausalLM.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
config=model_config, | |
# quantization_config=bnb_config, | |
device_map=device, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
query_pipeline = transformers.pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=True, | |
torch_dtype=torch.float16, | |
device_map=device, | |
do_sample=True, # Enable sampling | |
temperature=0.7, # Keep if sampling is used | |
top_p=0.9, | |
top_k=50, | |
max_new_tokens=256 | |
) | |
llm = HuggingFacePipeline(pipeline=query_pipeline) | |
books_db_client_retriever = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=books_db_client, | |
verbose=True | |
) | |
# Function to retrieve answer using the RAG system | |
def test_rag(query): | |
books_retriever = books_db_client_retriever.run(query) | |
# Extract the relevant answer using regex | |
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL) | |
if corrected_text_match: | |
corrected_text_books = corrected_text_match.group(1).strip() | |
else: | |
corrected_text_books = "No helpful answer found." | |
return corrected_text_books | |
# Define the Gradio interface | |
def chat(query, history=None): | |
if history is None: | |
history = [] | |
answer = test_rag(query) | |
history.append((query, answer)) | |
return history, history | |
# Gradio interface | |
interface = gr.Interface( | |
fn=chat, | |
inputs=[gr.Textbox(label="Enter your question"), gr.State()], | |
outputs=[gr.Chatbot(label="Chat History"), gr.State()], | |
live=True | |
) | |
interface.launch() | |