ChatBot / app.py
sanjeevbora's picture
auth
9911861 verified
raw
history blame
6.03 kB
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
from langchain_community.document_loaders import DirectoryLoader
import torch
import re
import transformers
import spaces
import requests
from urllib.parse import urlencode
# Initialize embeddings and ChromaDB
model_name = "sentence-transformers/all-mpnet-base-v2"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_kwargs = {"device": device}
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
docs = loader.load()
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db")
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings)
books_db_client = books_db.as_retriever()
# Initialize the model and tokenizer
model_name = "stabilityai/stablelm-zephyr-3b"
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
config=model_config,
device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
query_pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return_full_text=True,
torch_dtype=torch.float16,
device_map=device,
do_sample=True,
temperature=0.7,
top_p=0.9,
top_k=50,
max_new_tokens=256
)
llm = HuggingFacePipeline(pipeline=query_pipeline)
books_db_client_retriever = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=books_db_client,
verbose=True
)
# OAuth Configuration
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize"
TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token"
params = {
'client_id': CLIENT_ID,
'response_type': 'code',
'redirect_uri': REDIRECT_URI,
'response_mode': 'query',
'scope': 'User.Read',
'state': '12345' # Optional state parameter
}
# Construct the login URL
login_url = f"{AUTH_URL}?{urlencode(params)}"
# Gradio interface
def show_login_button():
return f'<a href="{login_url}" target="_blank">Click here to login with Microsoft</a>'
# Dummy function to simulate token validation (you will replace this with actual validation)
def is_logged_in(token):
# Check if the token exists (or check if it's valid)
return token is not None
# Gradio interface
def check_login(status):
# If logged in, show the chatbot interface, otherwise show login link
if status:
return gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False)
# Function to exchange authorization code for access token
def exchange_code_for_token(auth_code):
data = {
'grant_type': 'authorization_code',
'client_id': CLIENT_ID,
'client_secret': CLIENT_SECRET,
'code': auth_code,
'redirect_uri': REDIRECT_URI
}
response = requests.post(TOKEN_URL, data=data)
if response.status_code == 200:
token_data = response.json()
access_token = token_data.get('access_token')
return access_token
else:
return None
def login_user(auth_code):
# Exchange the authorization code for an access token
token = exchange_code_for_token(auth_code)
if token:
return token
else:
return None
# Function to retrieve answer using the RAG system
@spaces.GPU(duration=60)
def test_rag(query):
books_retriever = books_db_client_retriever.run(query)
# Extract the relevant answer using regex
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
if corrected_text_match:
corrected_text_books = corrected_text_match.group(1).strip()
else:
corrected_text_books = "No helpful answer found."
return corrected_text_books
# Define the Gradio interface
def chat(query, history=None):
if history is None:
history = []
if query:
answer = test_rag(query)
history.append((query, answer))
return history, "" # Clear input after submission
# Function to clear input text
def clear_input():
return "", # Return empty string to clear input field
with gr.Blocks() as interface:
gr.Markdown("## RAG Chatbot")
gr.Markdown("Please log in to continue.")
# Custom HTML to show login link
login_link = gr.HTML(f'<a href="{login_url}" target="_blank">Click here to login with Microsoft</a>')
# Login button to simulate the login process
login_button = gr.Button("Login")
# Components for chat (initially hidden)
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
submit_btn = gr.Button("Submit", visible=False)
chat_history = gr.Chatbot(label="Chat History", visible=False)
# Handle login button click
login_button.click(
login_user,
inputs=[],
outputs=[login_button], # You can also update the UI to show login status
queue=False
).then(
lambda token: check_login(is_logged_in(token)),
inputs=[],
outputs=[input_box, submit_btn]
)
# Input submission and chat handling
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
interface.launch()