File size: 6,605 Bytes
5f6d030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b1cbdc
5f6d030
9b1cbdc
5f6d030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b1cbdc
5f6d030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c58adbf
5f6d030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import streamlit as st
import pandas as pd
import os
import sqlite3
from langchain_community.utilities.sql_database import SQLDatabase
from langchain.chains import create_sql_query_chain
from langchain_openai import AzureChatOpenAI
from langchain_community.tools.sql_database.tool import QuerySQLDataBaseTool
from operator import itemgetter
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from ydata_profiling import ProfileReport
import streamlit.components.v1 as components
import tempfile
from langchain_openai import ChatOpenAI

# Enhanced Page Configuration
st.set_page_config(
    page_title="Chat with Excel/CSV",
    page_icon=":bar_chart:",
    layout="centered",
    initial_sidebar_state="expanded"
)

# Custom CSS for styling
st.markdown(
    """
    <style>
    /* Main Layout */
    .main {background-color: white;}
    
    /* Sidebar Styling */
    .sidebar .sidebar-content {
        background-color: #F1F5F9;
        color: black;
    }
    .sidebar .sidebar-content .stButton>button, .sidebar .sidebar-content h1, .sidebar .sidebar-content h2 {
        color: #1A202C;
    }

    /* Gradient Text for Main Greeting */
    .greeting-text {
        font-size: 3em;
        color: transparent;
        background-image: linear-gradient(90deg, #3b82f6, #ec4899);
        -webkit-background-clip: text;
        font-weight: 600;
        text-align: center;
    }

    /* Chat Input Styling */
    .stTextInput > div > input {
        background-color: #F1F5F9;
        color: #1A202C;
        border-radius: 8px;
        padding: 10px;
        margin-top: 10px;
        width: 100%;
    }

    /* Button Styling */
    .stButton > button {
        background-color: #3b82f6;
        color: white;
        border: none;
        border-radius: 5px;
        padding: 0.5em 1em;
        font-size: 1em;
        font-weight: 600;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# Function to handle Q&A option
def code_for_option_1(api_key):
    st.write('<div class="greeting-text">Hello, Sangram!</div>', unsafe_allow_html=True)
    st.sidebar.info("Ask any question about the uploaded Excel or CSV data.")
    st.sidebar.image("https://miro.medium.com/v2/resize:fit:786/format:webp/1*qUFgGhSERoWAa08MV6AVCQ.jpeg", use_container_width=True)
    
    uploaded_file = st.file_uploader("Upload Excel or CSV file:", type=["xlsx", "csv"])
    
    if uploaded_file is not None:
        # Use temporary file for uploaded content
        with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
            tmp_file.write(uploaded_file.read())
            tmp_file_path = tmp_file.name
        
        # Load Excel or CSV file
        if uploaded_file.name.endswith(".xlsx"):
            df = pd.read_excel(tmp_file_path)
        elif uploaded_file.name.endswith(".csv"):
            df = pd.read_csv(tmp_file_path)

        st.write("### Uploaded Data:")
        st.dataframe(df.head(len(df)))

        question = st.text_input("Ask a question:")
        submit = st.button("Ask")
        
        if submit:
            st.subheader("Answer:")
            st.write("Please wait, answer is generating...")

            # Initialize OpenAI chat model using the provided API key
            llm_1 = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, openai_api_key=api_key)

            with sqlite3.connect(f"{uploaded_file.name}.db") as conn:
                df.to_sql(f"{uploaded_file.name}s", conn, if_exists="replace")
                db = SQLDatabase.from_uri(f"sqlite:///{uploaded_file.name}.db")
                generate_query = create_sql_query_chain(llm_1, db)
                execute_query = QuerySQLDataBaseTool(db=db)
                
                answer_prompt = PromptTemplate.from_template(
                    """Given the following user question, SQL query, and SQL result, answer the question.

                    Question: {question}
                    SQL Query: {query}
                    SQL Result: {result}
                    Answer: """
                )
                
                rephrase_answer = answer_prompt | llm_1 | StrOutputParser()
                chain = (
                    RunnablePassthrough.assign(query=generate_query)
                    .assign(result=itemgetter("query") | execute_query)
                    | rephrase_answer
                )
                
                response = chain.invoke({"question": question})
                st.subheader(response)

# Function to handle EDA option
def code_for_option_2():
    st.sidebar.image("https://miro.medium.com/v2/resize:fit:702/1*Ra02AqsQlC0KV229EvM98g.png", use_container_width=True)
    st.sidebar.info("Explore insights from the uploaded data.")

    uploaded_file = st.file_uploader("Upload Excel or CSV file:", type=["xlsx", "csv"])
    
    if uploaded_file is not None:
        with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
            tmp_file.write(uploaded_file.read())
            tmp_file_path = tmp_file.name

        # Load Excel or CSV file
        if uploaded_file.name.endswith(".xlsx"):
            df = pd.read_excel(tmp_file_path)
        elif uploaded_file.name.endswith(".csv"):
            df = pd.read_csv(tmp_file_path)

        st.write("### Uploaded Data:")
        st.dataframe(df.head(len(df)))

        st.subheader("Exploratory Data Analysis (EDA):")
        st.write("Please wait, reports are generating...")
        response = ProfileReport(df)
        
        response.to_file("data_profile_report.html")
        with open("data_profile_report.html", "r", encoding="utf-8") as f:
            data = f.read()
        
        components.html(data, width=800, height=600, scrolling=True)

# Main UI layout
def main():
    st.sidebar.image("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSZYA5fOIfm6K6v3Lrro3MXksMfO3SdglfSyg&s", use_container_width=True)
    st.title("DocTalk : Chat with Excel/CSV")
    st.sidebar.title("Options")
    selected_option = st.sidebar.radio("Select an option:", ("Chat with Excel/CSV", "EDA"))

    # Take user API key input
    api_key = st.sidebar.text_input("Enter OpenAI API Key:", type="password")

    if api_key:
        if selected_option == "Chat with Excel/CSV":
            code_for_option_1(api_key)
        elif selected_option == "EDA":
            code_for_option_2()
        else:
            st.write("Please select an option.")
    else:
        st.sidebar.warning("Please enter your OpenAI API key to proceed.")

if __name__ == "__main__":
    main()