import gradio as gr from huggingface_hub import hf_hub_download import subprocess import tempfile import shutil def download_model(repo_id, model_name): model_path = hf_hub_download(repo_id=repo_id, filename=model_name) return model_path def run_inference(model_name, prompt_path): repo_id = "hpcai-tech/Open-Sora" config_mapping = { "OpenSora-v1-16x256x256.pth": "configs/opensora/inference/16x256x256.py", "OpenSora-v1-HQ-16x256x256.pth": "configs/opensora/inference/16x512x512.py", "OpenSora-v1-HQ-16x512x512.pth": "configs/opensora/inference/64x512x512.py" } config_path = config_mapping[model_name] ckpt_path = download_model(repo_id, model_name) with open(config_path, 'r') as file: config_content = file.read() config_content = config_content.replace('prompt_path = "./assets/texts/t2v_samples.txt"', f'prompt_path = "{prompt_path}"') with tempfile.NamedTemporaryFile('w', delete=False) as temp_file: temp_file.write(config_content) temp_config_path = temp_file.name cmd = [ "torchrun", "--standalone", "--nproc_per_node", "1", "scripts/inference.py", temp_config_path, "--ckpt-path", ckpt_path ] subprocess.run(cmd, capture_output=True, text=True) shutil.rmtree(temp_file.name) # Assuming the output video is saved in a known path, e.g., "./output/video.mp4" output_video_path = "./output/video.mp4" return output_video_path def main(): gr.Interface( fn=run_inference, inputs=[ gr.Dropdown(choices=[ "OpenSora-v1-16x256x256.pth", "OpenSora-v1-HQ-16x256x256.pth", "OpenSora-v1-HQ-16x512x512.pth" ], label="Model Selection"), gr.Textbox(label="Prompt Path", value="./assets/texts/t2v_samples.txt") ], outputs=gr.Video(label="Output Video"), title="Open-Sora Inference", description="Run Open-Sora Inference with Custom Parameters" ).launch() if __name__ == "__main__": main()