import gradio as gr from huggingface_hub import hf_hub_download import subprocess import tempfile import shutil import os import spaces from transformers import T5ForConditionalGeneration, T5Tokenizer import os def download_t5_model(model_id, save_directory): # Modelin tokenizer'ını ve modeli indir model = T5ForConditionalGeneration.from_pretrained(model_id) tokenizer = T5Tokenizer.from_pretrained(model_id) # Model ve tokenizer'ı belirtilen dizine kaydet if not os.path.exists(save_directory): os.makedirs(save_directory) model.save_pretrained(save_directory) tokenizer.save_pretrained(save_directory) # Model ID ve kaydedilecek dizin model_id = "DeepFloyd/t5-v1_1-xxl" save_directory = "pretrained_models/t5_ckpts/t5-v1_1-xxl" # Modeli indir download_t5_model(model_id, save_directory) def download_model(repo_id, model_name): model_path = hf_hub_download(repo_id=repo_id, filename=model_name) return model_path @spaces.GPU def run_inference(model_name, prompt_text): repo_id = "hpcai-tech/Open-Sora" # Map model names to their respective configuration files config_mapping = { "OpenSora-v1-16x256x256.pth": "configs/opensora/inference/16x256x256.py", "OpenSora-v1-HQ-16x256x256.pth": "configs/opensora/inference/16x512x512.py", "OpenSora-v1-HQ-16x512x512.pth": "configs/opensora/inference/64x512x512.py" } config_path = config_mapping[model_name] ckpt_path = download_model(repo_id, model_name) # Save prompt_text to a temporary text file prompt_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w') prompt_file.write(prompt_text) prompt_file.close() # Read and update the configuration file with open(config_path, 'r') as file: config_content = file.read() config_content = config_content.replace('prompt_path = "./assets/texts/t2v_samples.txt"', f'prompt_path = "{prompt_file.name}"') with tempfile.NamedTemporaryFile('w', delete=False, suffix='.py') as temp_file: temp_file.write(config_content) temp_config_path = temp_file.name cmd = [ "torchrun", "--standalone", "--nproc_per_node", "1", "scripts/inference.py", temp_config_path, "--ckpt-path", ckpt_path ] result = subprocess.run(cmd, capture_output=True, text=True) # Clean up the temporary files os.remove(temp_file.name) os.remove(prompt_file.name) if result.returncode == 0: # Assuming the output video is saved at a known location, for example "./output/video.mp4" output_video_path = "./output/video.mp4" return output_video_path else: print("Error occurred:", result.stderr) return None # You might want to handle errors differently def main(): gr.Interface( fn=run_inference, inputs=[ gr.Dropdown(choices=[ "OpenSora-v1-16x256x256.pth", "OpenSora-v1-HQ-16x256x256.pth", "OpenSora-v1-HQ-16x512x512.pth" ], label="Model Selection"), gr.Textbox(label="Prompt Text", placeholder="Enter prompt text here") ], outputs=gr.Video(label="Output Video"), title="Open-Sora Inference", description="Run Open-Sora Inference with Custom Parameters", ).launch() if __name__ == "__main__": main()