kadirnar's picture
Upload 494 files
8a42f8f verified
raw
history blame
1.53 kB
import torch
model_params_rank0 = torch.load("rank0model.pth",
map_location = lambda storage, loc: storage.cuda(0))
model_params_rank1 = torch.load("rank1model.pth",
map_location = lambda storage, loc: storage.cuda(0))
master_params_rank0 = torch.load("rank0master.pth",
map_location = lambda storage, loc: storage.cuda(0))
master_params_rank1 = torch.load("rank1master.pth",
map_location = lambda storage, loc: storage.cuda(0))
for model_rank0, model_rank1, master_rank0, master_rank1 in zip(
model_params_rank0,
model_params_rank1,
master_params_rank0,
master_params_rank1):
assert torch.allclose(model_rank0, model_rank1), "Model param mismatch"
assert torch.allclose(master_rank0, master_rank1), "Master param mismatch"
# Some debugging/investigation assistance code:
# maxval, maxind = torch.max(((torch.abs(model_rank0).float())/torch.abs(master_rank0)).view(-1), 0)
# offending_val_half = model_rank0.view(-1)[maxind.item()]
# offending_val_float = master_rank0.view(-1)[maxind.item()]
# print(maxval.item(), maxind.item(), offending_val_half.item(), offending_val_float.item(),
# offending_val_float.half().item())
# rtol needs to be > 2^-11 because of denormals...
assert torch.allclose(model_rank0, master_rank0.half(), rtol=.005), "Model-master mismatch"
print("OK: Model and master params match across ranks.")