Spaces:
Runtime error
Runtime error
import unittest | |
import os | |
import torch | |
from torch.optim import Optimizer | |
import apex | |
from apex.multi_tensor_apply import multi_tensor_applier | |
from itertools import product | |
class RefLAMB(Optimizer): | |
r"""Implements Lamb algorithm. | |
It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-6) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0.01) | |
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes: | |
https://arxiv.org/abs/1904.00962 | |
""" | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) | |
super(RefLAMB, self).__init__(params, defaults) | |
if multi_tensor_applier.available: | |
import amp_C | |
self.multi_tensor_l2norm=amp_C.multi_tensor_l2norm | |
# Skip buffer | |
self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device) | |
self.multi_tensor_lamb = amp_C.multi_tensor_lamb | |
else: | |
raise RuntimeError('apex.optimizers.FusedLAMB requires cuda extensions') | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
# create separate grad lists for fp32, fp16, and bf16 params | |
g_all_32, g_all_16, g_all_bf16 = [], [], [] | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
if p.dtype == torch.float32: | |
g_all_32.append(p.grad.data) | |
elif p.dtype == torch.float16: | |
g_all_16.append(p.grad.data) | |
elif p.dtype == torch.bfloat16: | |
g_all_bf16.append(p.grad.data) | |
else: | |
raise RuntimeError('FusedLAMB only support fp16, fp32, and bf16.') | |
device = self.param_groups[0]["params"][0].device | |
g_norm_32, g_norm_16, g_norm_bf16 = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) | |
# compute grad norm for two lists | |
if len(g_all_32) > 0: | |
g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, | |
self._dummy_overflow_buf, | |
[g_all_32], False)[0] | |
if len(g_all_16) > 0: | |
g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, | |
self._dummy_overflow_buf, | |
[g_all_16], False)[0] | |
if len(g_all_bf16) > 0: | |
g_norm_bf16 = multi_tensor_applier(self.multi_tensor_l2norm, | |
self._dummy_overflow_buf, | |
[g_all_bf16], False)[0] | |
# blend two grad norms to get global grad norm | |
global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm, | |
self._dummy_overflow_buf, | |
[[g_norm_32, g_norm_16, g_norm_bf16]], | |
False)[0] | |
max_grad_norm = 1.0 | |
clipped_ratio = max_grad_norm / max(global_grad_norm, max_grad_norm) | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
p.grad.data *= clipped_ratio | |
grad = p.grad.data | |
if grad.is_sparse: | |
raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.') | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['m'] = torch.zeros_like(p.data) | |
# Exponential moving average of squared gradient values | |
state['v'] = torch.zeros_like(p.data) | |
m_t, v_t = state['m'], state['v'] | |
beta1, beta2 = group['betas'] | |
state['step'] += 1 | |
# m_t = beta1 * m + (1 - beta1) * g_t | |
m_t.mul_(beta1).add_(grad, alpha=1-beta1) | |
# v_t = beta2 * v + (1 - beta2) * (g_t * g_t) | |
if len(g_all_16) > 0: | |
v_t.mul_(beta2) | |
v_t = v_t.to(torch.float32) | |
grad32 = grad.to(torch.float32) | |
v_t.addcmul_(grad32, grad32, value=1-beta2) | |
else: | |
v_t.mul_(beta2).addcmul_(grad, grad, value=1-beta2) | |
# Debiasing | |
m_t_hat = m_t / (1.0 - beta1 ** state['step']) | |
v_t_hat = v_t / (1.0 - beta2 ** state['step']) | |
update = m_t_hat / v_t_hat.sqrt().add(group['eps']) | |
if group['weight_decay'] != 0: | |
update.add_(p.data, alpha=group['weight_decay']) | |
trust_ratio = 1.0 | |
w_norm = p.data.to(torch.float32).pow(2).sum().sqrt() | |
g_norm = update.pow(2).sum().sqrt() | |
if w_norm > 0 and g_norm > 0: | |
trust_ratio = w_norm / g_norm | |
state['w_norm'] = w_norm | |
state['g_norm'] = g_norm | |
state['trust_ratio'] = trust_ratio | |
step_size = group['lr'] | |
p.data.add_(update, alpha=-step_size*trust_ratio) | |
return loss | |
class TestLamb(unittest.TestCase): | |
def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7): | |
self.max_abs_diff = max_abs_diff | |
self.max_rel_diff = max_rel_diff | |
self.iters = iters | |
torch.cuda.manual_seed(9876) | |
def tearDown(self): | |
pass | |
def gen_param_optim(self, tensors, lamb_option): | |
ref_param = [] | |
tst_param = [] | |
for tensor in tensors: | |
ref_param.append(torch.nn.Parameter(tensor.clone())) | |
tst_param.append(torch.nn.Parameter(tensor.clone())) | |
ref_optim = self.ref_optim(ref_param, **lamb_option) | |
tst_optim = self.tst_optim(tst_param, use_nvlamb=True, **lamb_option) | |
return (ref_param, tst_param, ref_optim, tst_optim) | |
def gen_grad(self, ref_param, tst_param): | |
for p_ref, p_tst in zip(ref_param, tst_param): | |
p_ref.grad = torch.rand_like(p_ref) | |
p_tst.grad = p_ref.grad | |
def gen_mixed_grad(self, ref_param, tst_param, scale=1.0): | |
half_grads = [] | |
for p_ref, _ in zip(ref_param, tst_param): | |
half_grads.append(torch.rand_like(p_ref).half()) | |
p_ref.grad = half_grads[-1].float() / scale | |
return half_grads | |
def get_max_diff(self, ref_param, tst_param): | |
max_abs_diff = max_rel_diff = 0 | |
for p_ref, p_tst in zip(ref_param, tst_param): | |
max_abs_diff_p = (p_ref - p_tst).abs().max().item() | |
max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item() | |
if max_abs_diff_p > max_abs_diff: max_abs_diff = max_abs_diff_p | |
if max_rel_diff_p > max_rel_diff: max_rel_diff = max_rel_diff_p | |
return max_abs_diff, max_rel_diff | |
def gen_single_type_test(self, param_type=torch.float, device="cuda"): | |
nelem = 18011 | |
tensor = torch.rand(nelem, dtype=param_type, device=device) | |
weight_decay = [0, 0.01] | |
for wd in weight_decay: | |
lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd} | |
ref_param, tst_param, ref_optim, tst_optim = \ | |
self.gen_param_optim([tensor], lamb_option) | |
if isinstance(tst_optim, apex.optimizers.FusedMixedPrecisionLamb): | |
if param_type != torch.float: | |
# joseli: This parameter is usually passed into the constructor, | |
# but I do not want to change the testing interface. | |
# As long as this parameter is set before the first call to step(), | |
# then it should act normally. | |
tst_optim.reduced_precision_dtype = param_type | |
for i in range(self.iters): | |
self.gen_grad(ref_param, tst_param) | |
ref_optim.step() | |
torch.cuda.synchronize() | |
tst_optim.step() | |
torch.cuda.synchronize() | |
torch.testing.assert_close(tst_param, ref_param) | |
class TestFusedLAMB(TestLamb): | |
def __init__(self, *args, **kwargs): | |
super(TestLamb, self).__init__(*args, **kwargs) | |
self.ref_optim = RefLAMB | |
self.tst_optim = apex.optimizers.FusedLAMB | |
def test_float(self): | |
self.gen_single_type_test(param_type=torch.float) | |
def test_half(self): | |
self.gen_single_type_test(param_type=torch.float16) | |
def test_multi_device(self): | |
devices = ("cuda:0", "cuda:1") | |
for current_dev, tensor_dev in product(devices, devices): | |
with torch.cuda.device(current_dev): | |
self.gen_single_type_test(param_type=torch.float, device=tensor_dev) | |
def test_multi_params(self): | |
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] | |
weight_decay = [0, 0.01] | |
for wd in weight_decay: | |
lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd} | |
tensors = [] | |
for size in sizes: | |
tensors.append(torch.rand(size, dtype=torch.float, device='cuda')) | |
ref_param, tst_param, ref_optim, tst_optim = \ | |
self.gen_param_optim(tensors, lamb_option) | |
for i in range(self.iters): | |
self.gen_grad(ref_param, tst_param) | |
ref_optim.step() | |
tst_optim.step() | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
def test_lamb_option(self): | |
nelem = 1 | |
tensor = torch.rand(nelem, dtype=torch.float, device='cuda') | |
weight_decay = [0, 0.01] | |
for wd in weight_decay: | |
lamb_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':wd} | |
ref_param, tst_param, ref_optim, tst_optim = \ | |
self.gen_param_optim([tensor], lamb_option) | |
for i in range(self.iters): | |
self.gen_grad(ref_param, tst_param) | |
ref_optim.step() | |
tst_optim.step() | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
class TestFusedMixedPrecisionLamb(TestLamb): | |
def __init__(self, *args, **kwargs): | |
super(TestLamb, self).__init__(*args, **kwargs) | |
self.ref_optim = RefLAMB | |
self.tst_optim = apex.optimizers.FusedMixedPrecisionLamb | |
def test_float(self): | |
self.gen_single_type_test(param_type=torch.float) | |
def test_bfloat16(self): | |
self.iters = 4 | |
self.gen_single_type_test(param_type=torch.bfloat16) | |
def test_half(self): | |
self.iters = 1 | |
self.gen_single_type_test(param_type=torch.float16) | |
def test_multi_device(self): | |
devices = ("cuda:0", "cuda:1") | |
for current_dev, tensor_dev in product(devices, devices): | |
with torch.cuda.device(current_dev): | |
self.gen_single_type_test(param_type=torch.float, device=tensor_dev) | |
def test_multi_params(self): | |
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] | |
weight_decay = [0, 0.01] | |
for wd in weight_decay: | |
lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd} | |
tensors = [] | |
for size in sizes: | |
tensors.append(torch.rand(size, dtype=torch.float, device='cuda')) | |
ref_param, tst_param, ref_optim, tst_optim = \ | |
self.gen_param_optim(tensors, lamb_option) | |
for i in range(self.iters): | |
self.gen_grad(ref_param, tst_param) | |
ref_optim.step() | |
tst_optim.step() | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
def test_lamb_option(self): | |
nelem = 1 | |
tensor = torch.rand(nelem, dtype=torch.float, device='cuda') | |
weight_decay = [0, 0.01] | |
for wd in weight_decay: | |
lamb_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':wd} | |
ref_param, tst_param, ref_optim, tst_optim = \ | |
self.gen_param_optim([tensor], lamb_option) | |
for i in range(self.iters): | |
self.gen_grad(ref_param, tst_param) | |
ref_optim.step() | |
tst_optim.step() | |
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) | |
self.assertLessEqual(max_abs_diff, self.max_abs_diff) | |
self.assertLessEqual(max_rel_diff, self.max_rel_diff) | |
if __name__ == '__main__': | |
script_path = os.path.dirname(os.path.realpath(__file__)) | |
unittest.main() | |