kadirnar's picture
Upload 494 files
8a42f8f verified
raw
history blame
14.9 kB
import unittest
import os
import torch
from torch.optim import Optimizer
import apex
from apex.multi_tensor_apply import multi_tensor_applier
from itertools import product
class RefLAMB(Optimizer):
r"""Implements Lamb algorithm.
It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-6)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0.01)
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes:
https://arxiv.org/abs/1904.00962
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(RefLAMB, self).__init__(params, defaults)
if multi_tensor_applier.available:
import amp_C
self.multi_tensor_l2norm=amp_C.multi_tensor_l2norm
# Skip buffer
self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device)
self.multi_tensor_lamb = amp_C.multi_tensor_lamb
else:
raise RuntimeError('apex.optimizers.FusedLAMB requires cuda extensions')
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
# create separate grad lists for fp32, fp16, and bf16 params
g_all_32, g_all_16, g_all_bf16 = [], [], []
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
if p.dtype == torch.float32:
g_all_32.append(p.grad.data)
elif p.dtype == torch.float16:
g_all_16.append(p.grad.data)
elif p.dtype == torch.bfloat16:
g_all_bf16.append(p.grad.data)
else:
raise RuntimeError('FusedLAMB only support fp16, fp32, and bf16.')
device = self.param_groups[0]["params"][0].device
g_norm_32, g_norm_16, g_norm_bf16 = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
# compute grad norm for two lists
if len(g_all_32) > 0:
g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm,
self._dummy_overflow_buf,
[g_all_32], False)[0]
if len(g_all_16) > 0:
g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm,
self._dummy_overflow_buf,
[g_all_16], False)[0]
if len(g_all_bf16) > 0:
g_norm_bf16 = multi_tensor_applier(self.multi_tensor_l2norm,
self._dummy_overflow_buf,
[g_all_bf16], False)[0]
# blend two grad norms to get global grad norm
global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm,
self._dummy_overflow_buf,
[[g_norm_32, g_norm_16, g_norm_bf16]],
False)[0]
max_grad_norm = 1.0
clipped_ratio = max_grad_norm / max(global_grad_norm, max_grad_norm)
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
p.grad.data *= clipped_ratio
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['m'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['v'] = torch.zeros_like(p.data)
m_t, v_t = state['m'], state['v']
beta1, beta2 = group['betas']
state['step'] += 1
# m_t = beta1 * m + (1 - beta1) * g_t
m_t.mul_(beta1).add_(grad, alpha=1-beta1)
# v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
if len(g_all_16) > 0:
v_t.mul_(beta2)
v_t = v_t.to(torch.float32)
grad32 = grad.to(torch.float32)
v_t.addcmul_(grad32, grad32, value=1-beta2)
else:
v_t.mul_(beta2).addcmul_(grad, grad, value=1-beta2)
# Debiasing
m_t_hat = m_t / (1.0 - beta1 ** state['step'])
v_t_hat = v_t / (1.0 - beta2 ** state['step'])
update = m_t_hat / v_t_hat.sqrt().add(group['eps'])
if group['weight_decay'] != 0:
update.add_(p.data, alpha=group['weight_decay'])
trust_ratio = 1.0
w_norm = p.data.to(torch.float32).pow(2).sum().sqrt()
g_norm = update.pow(2).sum().sqrt()
if w_norm > 0 and g_norm > 0:
trust_ratio = w_norm / g_norm
state['w_norm'] = w_norm
state['g_norm'] = g_norm
state['trust_ratio'] = trust_ratio
step_size = group['lr']
p.data.add_(update, alpha=-step_size*trust_ratio)
return loss
class TestLamb(unittest.TestCase):
def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7):
self.max_abs_diff = max_abs_diff
self.max_rel_diff = max_rel_diff
self.iters = iters
torch.cuda.manual_seed(9876)
def tearDown(self):
pass
def gen_param_optim(self, tensors, lamb_option):
ref_param = []
tst_param = []
for tensor in tensors:
ref_param.append(torch.nn.Parameter(tensor.clone()))
tst_param.append(torch.nn.Parameter(tensor.clone()))
ref_optim = self.ref_optim(ref_param, **lamb_option)
tst_optim = self.tst_optim(tst_param, use_nvlamb=True, **lamb_option)
return (ref_param, tst_param, ref_optim, tst_optim)
def gen_grad(self, ref_param, tst_param):
for p_ref, p_tst in zip(ref_param, tst_param):
p_ref.grad = torch.rand_like(p_ref)
p_tst.grad = p_ref.grad
def gen_mixed_grad(self, ref_param, tst_param, scale=1.0):
half_grads = []
for p_ref, _ in zip(ref_param, tst_param):
half_grads.append(torch.rand_like(p_ref).half())
p_ref.grad = half_grads[-1].float() / scale
return half_grads
def get_max_diff(self, ref_param, tst_param):
max_abs_diff = max_rel_diff = 0
for p_ref, p_tst in zip(ref_param, tst_param):
max_abs_diff_p = (p_ref - p_tst).abs().max().item()
max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item()
if max_abs_diff_p > max_abs_diff: max_abs_diff = max_abs_diff_p
if max_rel_diff_p > max_rel_diff: max_rel_diff = max_rel_diff_p
return max_abs_diff, max_rel_diff
def gen_single_type_test(self, param_type=torch.float, device="cuda"):
nelem = 18011
tensor = torch.rand(nelem, dtype=param_type, device=device)
weight_decay = [0, 0.01]
for wd in weight_decay:
lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd}
ref_param, tst_param, ref_optim, tst_optim = \
self.gen_param_optim([tensor], lamb_option)
if isinstance(tst_optim, apex.optimizers.FusedMixedPrecisionLamb):
if param_type != torch.float:
# joseli: This parameter is usually passed into the constructor,
# but I do not want to change the testing interface.
# As long as this parameter is set before the first call to step(),
# then it should act normally.
tst_optim.reduced_precision_dtype = param_type
for i in range(self.iters):
self.gen_grad(ref_param, tst_param)
ref_optim.step()
torch.cuda.synchronize()
tst_optim.step()
torch.cuda.synchronize()
torch.testing.assert_close(tst_param, ref_param)
class TestFusedLAMB(TestLamb):
def __init__(self, *args, **kwargs):
super(TestLamb, self).__init__(*args, **kwargs)
self.ref_optim = RefLAMB
self.tst_optim = apex.optimizers.FusedLAMB
def test_float(self):
self.gen_single_type_test(param_type=torch.float)
@unittest.skip("PyTorch optimizer is not numerically correct for fp16")
def test_half(self):
self.gen_single_type_test(param_type=torch.float16)
@unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
def test_multi_device(self):
devices = ("cuda:0", "cuda:1")
for current_dev, tensor_dev in product(devices, devices):
with torch.cuda.device(current_dev):
self.gen_single_type_test(param_type=torch.float, device=tensor_dev)
def test_multi_params(self):
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
weight_decay = [0, 0.01]
for wd in weight_decay:
lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd}
tensors = []
for size in sizes:
tensors.append(torch.rand(size, dtype=torch.float, device='cuda'))
ref_param, tst_param, ref_optim, tst_optim = \
self.gen_param_optim(tensors, lamb_option)
for i in range(self.iters):
self.gen_grad(ref_param, tst_param)
ref_optim.step()
tst_optim.step()
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
self.assertLessEqual(max_abs_diff, self.max_abs_diff)
self.assertLessEqual(max_rel_diff, self.max_rel_diff)
def test_lamb_option(self):
nelem = 1
tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
weight_decay = [0, 0.01]
for wd in weight_decay:
lamb_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':wd}
ref_param, tst_param, ref_optim, tst_optim = \
self.gen_param_optim([tensor], lamb_option)
for i in range(self.iters):
self.gen_grad(ref_param, tst_param)
ref_optim.step()
tst_optim.step()
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
self.assertLessEqual(max_abs_diff, self.max_abs_diff)
self.assertLessEqual(max_rel_diff, self.max_rel_diff)
class TestFusedMixedPrecisionLamb(TestLamb):
def __init__(self, *args, **kwargs):
super(TestLamb, self).__init__(*args, **kwargs)
self.ref_optim = RefLAMB
self.tst_optim = apex.optimizers.FusedMixedPrecisionLamb
def test_float(self):
self.gen_single_type_test(param_type=torch.float)
def test_bfloat16(self):
self.iters = 4
self.gen_single_type_test(param_type=torch.bfloat16)
def test_half(self):
self.iters = 1
self.gen_single_type_test(param_type=torch.float16)
@unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
def test_multi_device(self):
devices = ("cuda:0", "cuda:1")
for current_dev, tensor_dev in product(devices, devices):
with torch.cuda.device(current_dev):
self.gen_single_type_test(param_type=torch.float, device=tensor_dev)
def test_multi_params(self):
sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
weight_decay = [0, 0.01]
for wd in weight_decay:
lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd}
tensors = []
for size in sizes:
tensors.append(torch.rand(size, dtype=torch.float, device='cuda'))
ref_param, tst_param, ref_optim, tst_optim = \
self.gen_param_optim(tensors, lamb_option)
for i in range(self.iters):
self.gen_grad(ref_param, tst_param)
ref_optim.step()
tst_optim.step()
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
self.assertLessEqual(max_abs_diff, self.max_abs_diff)
self.assertLessEqual(max_rel_diff, self.max_rel_diff)
def test_lamb_option(self):
nelem = 1
tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
weight_decay = [0, 0.01]
for wd in weight_decay:
lamb_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':wd}
ref_param, tst_param, ref_optim, tst_optim = \
self.gen_param_optim([tensor], lamb_option)
for i in range(self.iters):
self.gen_grad(ref_param, tst_param)
ref_optim.step()
tst_optim.step()
max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
self.assertLessEqual(max_abs_diff, self.max_abs_diff)
self.assertLessEqual(max_rel_diff, self.max_rel_diff)
if __name__ == '__main__':
script_path = os.path.dirname(os.path.realpath(__file__))
unittest.main()