Spaces:
Runtime error
Runtime error
import unittest | |
import torch | |
import torch.nn as nn | |
from apex.fp16_utils import FP16Model | |
class DummyBlock(nn.Module): | |
def __init__(self): | |
super(DummyBlock, self).__init__() | |
self.conv = nn.Conv2d(10, 10, 2) | |
self.bn = nn.BatchNorm2d(10, affine=True) | |
def forward(self, x): | |
return self.conv(self.bn(x)) | |
class DummyNet(nn.Module): | |
def __init__(self): | |
super(DummyNet, self).__init__() | |
self.conv1 = nn.Conv2d(3, 10, 2) | |
self.bn1 = nn.BatchNorm2d(10, affine=False) | |
self.db1 = DummyBlock() | |
self.db2 = DummyBlock() | |
def forward(self, x): | |
out = x | |
out = self.conv1(out) | |
out = self.bn1(out) | |
out = self.db1(out) | |
out = self.db2(out) | |
return out | |
class DummyNetWrapper(nn.Module): | |
def __init__(self): | |
super(DummyNetWrapper, self).__init__() | |
self.bn = nn.BatchNorm2d(3, affine=True) | |
self.dn = DummyNet() | |
def forward(self, x): | |
return self.dn(self.bn(x)) | |
class TestFP16Model(unittest.TestCase): | |
def setUp(self): | |
self.N = 64 | |
self.C_in = 3 | |
self.H_in = 16 | |
self.W_in = 32 | |
self.in_tensor = torch.randn((self.N, self.C_in, self.H_in, self.W_in)).cuda() | |
self.orig_model = DummyNetWrapper().cuda() | |
self.fp16_model = FP16Model(self.orig_model) | |
def test_params_and_buffers(self): | |
exempted_modules = [ | |
self.fp16_model.network.bn, | |
self.fp16_model.network.dn.db1.bn, | |
self.fp16_model.network.dn.db2.bn, | |
] | |
for m in self.fp16_model.modules(): | |
expected_dtype = torch.float if (m in exempted_modules) else torch.half | |
for p in m.parameters(recurse=False): | |
assert p.dtype == expected_dtype | |
for b in m.buffers(recurse=False): | |
assert b.dtype in (expected_dtype, torch.int64) | |
def test_output_is_half(self): | |
out_tensor = self.fp16_model(self.in_tensor) | |
assert out_tensor.dtype == torch.half | |