Open-Sora / apex /docs /source /fp16_utils.rst
kadirnar's picture
Upload 494 files
8a42f8f verified
raw
history blame
1.96 kB
.. role:: hidden
:class: hidden-section
apex.fp16_utils
===================================
This submodule contains utilities designed to streamline the mixed precision training recipe
presented by NVIDIA `on Parallel Forall`_ and in GTC 2018 Sessions
`Training Neural Networks with Mixed Precision: Theory and Practice`_ and
`Training Neural Networks with Mixed Precision: Real Examples`_.
For Pytorch users, Real Examples in particular is recommended.
Full runnable Python scripts demonstrating ``apex.fp16_utils``
can be found on the Github page:
| `Simple FP16_Optimizer demos`_
|
| `Distributed Mixed Precision Training with imagenet`_
|
| `Mixed Precision Training with word_language_model`_
|
|
.. _`on Parallel Forall`:
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
.. _`Training Neural Networks with Mixed Precision: Theory and Practice`:
http://on-demand.gputechconf.com/gtc/2018/video/S8923/
.. _`Training Neural Networks with Mixed Precision: Real Examples`:
http://on-demand.gputechconf.com/gtc/2018/video/S81012/
.. _`Simple FP16_Optimizer demos`:
https://github.com/NVIDIA/apex/tree/master/examples/FP16_Optimizer_simple
.. _`Distributed Mixed Precision Training with imagenet`:
https://github.com/NVIDIA/apex/tree/master/examples/imagenet
.. _`Mixed Precision Training with word_language_model`:
https://github.com/NVIDIA/apex/tree/master/examples/word_language_model
.. automodule:: apex.fp16_utils
.. currentmodule:: apex.fp16_utils
Automatic management of master params + loss scaling
----------------------------------------------------
.. autoclass:: FP16_Optimizer
:members:
.. autoclass:: LossScaler
:members:
.. autoclass:: DynamicLossScaler
:members:
Manual master parameter management
----------------------------------
.. autofunction:: prep_param_lists
.. autofunction:: master_params_to_model_params
.. autofunction:: model_grads_to_master_grads