Spaces:
Runtime error
Runtime error
// Another possibility: | |
// #include <torch/all.h> | |
// Stringstream is a big hammer, but I want to rely on operator<< for dtype. | |
template<typename T> | |
__device__ __forceinline__ bool is_aligned(T* p){ | |
return ((uint64_t)p) % (ILP*sizeof(T)) == 0; | |
} | |
template<typename T> | |
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){ | |
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT; | |
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset]; | |
} | |
template<typename in_t, typename out_t> | |
struct ScaleFunctor | |
{ | |
__device__ __forceinline__ void operator()( | |
int chunk_size, | |
volatile int* noop_gmem, | |
TensorListMetadata<2>& tl, | |
float scale) | |
{ | |
// I'd like this kernel to propagate infs/nans. | |
// if(*noop_gmem == 1) | |
// return; | |
int tensor_loc = tl.block_to_tensor[blockIdx.x]; | |
int chunk_idx = tl.block_to_chunk[blockIdx.x]; | |
int n = tl.sizes[tensor_loc]; | |
in_t* in = (in_t*)tl.addresses[0][tensor_loc]; | |
in += chunk_idx*chunk_size; | |
out_t* out = (out_t*)tl.addresses[1][tensor_loc]; | |
out += chunk_idx*chunk_size; | |
n -= chunk_idx*chunk_size; | |
bool finite = true; | |
in_t r_in[ILP]; | |
out_t r_out[ILP]; | |
// to make things simple, we put aligned case in a different code path | |
if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(in) && is_aligned(out)) | |
{ | |
for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x) | |
{ | |
// load | |
load_store(r_in, in, 0 , i_start); | |
for(int ii = 0; ii < ILP; ii++) | |
{ | |
r_out[ii] = static_cast<float>(r_in[ii]) * scale; | |
finite = finite && isfinite(r_in[ii]); | |
} | |
// store | |
load_store(out, r_out, i_start, 0); | |
} | |
} | |
else | |
{ | |
// Non-divergent exit condition for __syncthreads, not necessary here | |
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP) | |
{ | |
for(int ii = 0; ii < ILP; ii++) | |
{ | |
r_in[ii] = 0; | |
int i = i_start + threadIdx.x + ii*blockDim.x; | |
if(i < n && i < chunk_size) | |
r_in[ii] = in[i]; | |
} | |
// note for clarification to future michael: | |
// From a pure memory dependency perspective, there's likely no point unrolling | |
// the write loop, since writes just fire off once their LDGs arrive. | |
// Put another way, the STGs are dependent on the LDGs, but not on each other. | |
// There is still compute ILP benefit from unrolling the loop though. | |
for(int ii = 0; ii < ILP; ii++) | |
{ | |
r_out[ii] = static_cast<float>(r_in[ii]) * scale; | |
finite = finite && isfinite(r_in[ii]); | |
} | |
for(int ii = 0; ii < ILP; ii++) | |
{ | |
int i = i_start + threadIdx.x + ii*blockDim.x; | |
if(i < n && i < chunk_size) | |
out[i] = r_out[ii]; | |
} | |
} | |
} | |
if(!finite) | |
*noop_gmem = 1; // Blindly fire off a write. These will race but that's ok. | |
} | |
}; | |
void multi_tensor_scale_cuda( | |
int chunk_size, | |
at::Tensor noop_flag, | |
std::vector<std::vector<at::Tensor>> tensor_lists, | |
float scale) | |
{ | |
using namespace at; | |
// The output (downscaled) type is always float. | |
// If build times suffer, think about where to put this dispatch, | |
// and what logic should be moved out of multi_tensor_apply. | |
DISPATCH_FLOAT_HALF_AND_BFLOAT(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_scale_cuda", | |
DISPATCH_FLOAT_HALF_AND_BFLOAT(tensor_lists[1][0].scalar_type(), 1, "multi_tensor_scale_cuda", | |
multi_tensor_apply<2>( | |
BLOCK_SIZE, | |
chunk_size, | |
noop_flag, | |
tensor_lists, | |
ScaleFunctor<scalar_t_0, scalar_t_1>(), | |
scale); )) | |
AT_CUDA_CHECK(cudaGetLastError()); | |
// AT_CUDA_CHECK(cudaDeviceSynchronize()); | |
} | |