Open-Sora / apex /csrc /multi_tensor_axpby_kernel.cu
kadirnar's picture
Upload 494 files
8a42f8f verified
raw
history blame
4.7 kB
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
// Another possibility:
// #include <torch/all.h>
#include <assert.h>
#include "type_shim.h"
#include "multi_tensor_apply.cuh"
#define BLOCK_SIZE 512
#define ILP 4
template<typename T>
__device__ __forceinline__ bool is_aligned(T* p){
return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
}
template<typename T>
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}
template<typename x_t, typename y_t, typename out_t>
struct AxpbyFunctor
{
__device__ __forceinline__ void operator()(
int chunk_size,
volatile int* noop_gmem,
TensorListMetadata<3>& tl,
float a,
float b,
int arg_to_check)
{
// I'd like this kernel to propagate infs/nans.
// if(*noop_gmem == 1)
// return;
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.sizes[tensor_loc];
x_t* x = (x_t*)tl.addresses[0][tensor_loc];
x += chunk_idx*chunk_size;
y_t* y = (y_t*)tl.addresses[1][tensor_loc];
y += chunk_idx*chunk_size;
out_t* out = (out_t*)tl.addresses[2][tensor_loc];
out += chunk_idx*chunk_size;
n -= chunk_idx*chunk_size;
bool finite = true;
x_t r_x[ILP];
y_t r_y[ILP];
out_t r_out[ILP];
// to make things simple, we put aligned case in a different code path
if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x) && is_aligned(y) && is_aligned(out))
{
for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
{
// load
load_store(r_x, x, 0 , i_start);
load_store(r_y, y, 0 , i_start);
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
r_out[ii] = a*static_cast<float>(r_x[ii]) + b*static_cast<float>(r_y[ii]);
if(arg_to_check == -1)
finite = finite && (isfinite(r_x[ii]) && isfinite(r_y[ii]));
if(arg_to_check == 0)
finite = finite && isfinite(r_x[ii]);
if(arg_to_check == 1)
finite = finite && isfinite(r_y[ii]);
}
// store
load_store(out, r_out, i_start , 0);
}
}
else
{
// Non-divergent exit condition for __syncthreads, not necessary here
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
{
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
r_x[ii] = 0;
r_y[ii] = 0;
int i = i_start + threadIdx.x + ii*blockDim.x;
if(i < n && i < chunk_size)
{
r_x[ii] = x[i];
r_y[ii] = y[i];
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
r_out[ii] = a*static_cast<float>(r_x[ii]) + b*static_cast<float>(r_y[ii]);
if(arg_to_check == -1)
finite = finite && (isfinite(r_x[ii]) && isfinite(r_y[ii]));
if(arg_to_check == 0)
finite = finite && isfinite(r_x[ii]);
if(arg_to_check == 1)
finite = finite && isfinite(r_y[ii]);
}
// see note in multi_tensor_scale_kernel.cu
#pragma unroll
for(int ii = 0; ii < ILP; ii++)
{
int i = i_start + threadIdx.x + ii*blockDim.x;
if(i < n && i < chunk_size)
out[i] = r_out[ii];
}
}
}
if(!finite)
*noop_gmem = 1; // Blindly fire off a write. These will race but that's ok.
}
};
void multi_tensor_axpby_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
float a,
float b,
int arg_to_check)
{
using namespace at;
// The output (downscaled) type is always float.
// If build times suffer, think about where to put this dispatch,
// and what logic should be moved out of multi_tensor_apply.
DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_axpby_cuda",
DISPATCH_FLOAT_AND_HALF(tensor_lists[1][0].scalar_type(), 1, "multi_tensor_axpby_cuda",
DISPATCH_FLOAT_AND_HALF(tensor_lists[2][0].scalar_type(), 2, "multi_tensor_axpby_cuda",
multi_tensor_apply<3>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
AxpbyFunctor<scalar_t_0, scalar_t_1, scalar_t_2>(),
a,
b,
arg_to_check); )))
AT_CUDA_CHECK(cudaGetLastError());
// AT_CUDA_CHECK(cudaDeviceSynchronize());
}