Spaces:
Runtime error
Runtime error
// Another possibility: | |
// #include <torch/all.h> | |
typedef enum { | |
ADAGRAD_MODE_0 = 0, // L2 regularization mode. | |
ADAGRAD_MODE_1 = 1, // AdamW-style weight decay. | |
} adagradMode_t; | |
using MATH_T = float; | |
template <typename T> struct AdagradFunctor { | |
__device__ __forceinline__ void | |
operator()(int chunk_size, volatile int *noop_gmem, TensorListMetadata<3> &tl, | |
const float epsilon, const float lr, adagradMode_t mode, | |
const float weight_decay) { | |
int tensor_loc = tl.block_to_tensor[blockIdx.x]; | |
int chunk_idx = tl.block_to_chunk[blockIdx.x]; | |
int n = tl.sizes[tensor_loc]; | |
T *g = (T *)tl.addresses[0][tensor_loc]; | |
g += chunk_idx * chunk_size; | |
T *p = (T *)tl.addresses[1][tensor_loc]; | |
p += chunk_idx * chunk_size; | |
T *h = (T *)tl.addresses[2][tensor_loc]; | |
h += chunk_idx * chunk_size; | |
n -= chunk_idx * chunk_size; | |
// see note in multi_tensor_scale_kernel.cu | |
for (int i_start = 0; i_start < n && i_start < chunk_size; | |
i_start += blockDim.x * ILP) { | |
MATH_T r_g[ILP]; | |
MATH_T r_p[ILP]; | |
MATH_T r_h[ILP]; | |
for (int ii = 0; ii < ILP; ii++) { | |
int i = i_start + threadIdx.x + ii * blockDim.x; | |
if (i < n && i < chunk_size) { | |
r_g[ii] = g[i]; | |
r_p[ii] = p[i]; | |
r_h[ii] = h[i]; | |
} else { | |
r_g[ii] = MATH_T(0); | |
r_p[ii] = MATH_T(0); | |
r_h[ii] = MATH_T(0); | |
} | |
} | |
for (int ii = 0; ii < ILP; ii++) { | |
if (mode == ADAGRAD_MODE_0) { // L2 | |
r_g[ii] = r_g[ii] + weight_decay * r_p[ii]; | |
r_h[ii] = r_h[ii] + r_g[ii] * r_g[ii]; | |
r_p[ii] = r_p[ii] - lr * (r_g[ii] / (sqrtf(r_h[ii]) + epsilon)); | |
} else { // AdamW-style | |
r_h[ii] = r_h[ii] + r_g[ii] * r_g[ii]; | |
r_p[ii] = r_p[ii] - lr * (r_g[ii] / (sqrtf(r_h[ii]) + epsilon) + weight_decay * r_p[ii]); | |
} | |
} | |
for (int ii = 0; ii < ILP; ii++) { | |
int i = i_start + threadIdx.x + ii * blockDim.x; | |
if (i < n && i < chunk_size) { | |
p[i] = r_p[ii]; | |
h[i] = r_h[ii]; | |
} | |
} | |
} | |
} | |
}; | |
void multi_tensor_adagrad_cuda( | |
int chunk_size, at::Tensor noop_flag, | |
std::vector<std::vector<at::Tensor>> tensor_lists, const float lr, | |
const float epsilon, const int mode, const float weight_decay) { | |
using namespace at; | |
// Assume single type across p,g,h now | |
DISPATCH_DOUBLE_FLOAT_AND_HALF( | |
tensor_lists[0][0].scalar_type(), 0, "adagrad", | |
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, | |
AdagradFunctor<scalar_t_0>(), epsilon, lr, | |
(adagradMode_t)mode, weight_decay);) | |
AT_CUDA_CHECK(cudaGetLastError()); | |
} | |