Open-Sora / apex /csrc /megatron /generic_scaled_masked_softmax.h
kadirnar's picture
Upload 494 files
8a42f8f verified
raw
history blame
12.6 kB
/* coding=utf-8
* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <assert.h>
#include <cuda_fp16.h>
#include <cfloat>
#include <limits>
#include <stdint.h>
#include <cuda_fp16.h>
#include <c10/macros/Macros.h>
namespace {
template<typename T>
struct Add {
__device__ __forceinline__ T operator()(T a, T b) const {
return a + b;
}
};
template<typename T>
struct Max {
__device__ __forceinline__ T operator()(T a, T b) const {
return a < b ? b : a;
}
};
template <typename T>
__device__ __forceinline__ T WARP_SHFL_DOWN_NATIVE(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
return __shfl_down_sync(mask, value, laneMask, width);
#else
return __shfl_down(value, laneMask, width);
#endif
}
template <typename acc_t, int WARP_SIZE, template<typename> class ReduceOp>
__device__ __forceinline__ acc_t warp_reduce_new(acc_t val) {
ReduceOp<acc_t> r;
#pragma unroll
for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2)
{
val = r(val, WARP_SHFL_DOWN_NATIVE(val, offset, WARP_SIZE));
}
return val;
}
template <typename input_t, typename output_t, typename acc_t, int log2_elements>
__global__ void scaled_masked_softmax_warp_backward_new(
output_t *gradInput, //[batches, attn_heads, q_len, k_len]
input_t *grad,
const input_t *output, //[batches, attn_heads, q_len, k_len]
acc_t scale,
int element_count)
{
int threads_per_block = blockDim.x;
//the first element_count*2 elements are used for cache, the last 128 is used for reduction
extern __shared__ acc_t shared_data[];
input_t *local_data = (input_t *)shared_data;
input_t *output_data = &local_data[element_count];
// maximum shared cached 128, enough for 4096 elements reduction into 4096/32= 128 elements
acc_t *shared = (acc_t *)(&(local_data[element_count*2]));
int num_reductions = (element_count - 1) / threads_per_block + 1;
int offset = blockIdx.x * element_count;
int local_idx = threadIdx.x;
int lane = threadIdx.x % C10_WARP_SIZE;
int wid = threadIdx.x / C10_WARP_SIZE;
int warps_per_thread_block = threads_per_block / C10_WARP_SIZE;
// load the data to local data
acc_t val = 0.0;
for (int i = 0; i < num_reductions; i++){
if (i*threads_per_block + local_idx < element_count){
val = output[offset + i*threads_per_block + local_idx];
output_data[i*threads_per_block + local_idx] = val;
local_data[i*threads_per_block + local_idx] = val * grad[offset + i*threads_per_block + local_idx];
}
__syncthreads();
}
// find the sum
for (int i = local_idx; i < (element_count - 1) / C10_WARP_SIZE + 1; i += threads_per_block){
shared[i] = 0.0;
}
__syncthreads();
#pragma unroll
for (int i = 0; i < num_reductions; i++){
if (i*threads_per_block + local_idx < element_count){
val = local_data[i*threads_per_block + local_idx];
}
else{
val = 0.0;
}
__syncthreads();
val = warp_reduce_new<acc_t, C10_WARP_SIZE, Add>(val);
if (lane==0 && wid + warps_per_thread_block * i < (element_count - 1) / C10_WARP_SIZE + 1) {
shared[wid + warps_per_thread_block*i] = val;
}
__syncthreads();
}
// final shared reduction
int shared_mem_len = (element_count - 1) / C10_WARP_SIZE + 1;
int num_warps = (shared_mem_len - 1) / C10_WARP_SIZE + 1;
while ( shared_mem_len > 1 ){
#pragma unroll
for (int i = 0; i < num_reductions; i++){
if (i*threads_per_block + local_idx < shared_mem_len){
val = shared[i*threads_per_block + local_idx];
}
else{
val = 0.0;
}
__syncthreads();
val = warp_reduce_new<acc_t, C10_WARP_SIZE, Add>(val);
if (lane==0) {
shared[wid + warps_per_thread_block * i] = val;
}
__syncthreads();
}
shared_mem_len = num_warps;
num_warps = (shared_mem_len - 1) / C10_WARP_SIZE + 1;
}
val = shared[0];
#pragma unroll
for (int i = local_idx; i < element_count; i += threads_per_block){
gradInput[offset + i] = (output_t)(scale*(local_data[i] - output_data[i]*val));
}
}
} // end of anonymous namespace
template<typename input_t, typename output_t, typename acc_t>
void dispatch_scaled_masked_softmax_backward_new(
output_t *grad_input,
input_t *grad,
const input_t *output,
const acc_t scale,
int query_seq_len,
int key_seq_len,
int batches,
int attn_heads)
{
if (key_seq_len == 0)
{
return;
}
else
{
int batch_count = batches * attn_heads * query_seq_len;
// use 128 threads per block to maximize gpu utilization
constexpr int threads_per_block = 128;
int num_warps = (key_seq_len - 1) / C10_WARP_SIZE + 1;
dim3 blocks(batch_count, 1, 1);
dim3 threads(threads_per_block, 1, 1);
scaled_masked_softmax_warp_backward_new<input_t, output_t, acc_t, 12>
<<<blocks, threads, sizeof(input_t)*key_seq_len*2 + sizeof(acc_t)*num_warps, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, key_seq_len);
}
}
/*
* Extended softmax (from native aten pytorch) with following additional features
* 1) input scaling
* 2) Explicit masking
*/
template <typename input_t, typename output_t, typename acc_t>
__global__ void scaled_masked_softmax_warp_forward_new(
output_t *dst,
const input_t *src,
const uint8_t *mask,
const acc_t scale,
int query_len, // query_len
int attn_heads,
int element_count, // key_len
int pad_batches) // mask batch size
{
// min threawds_per_block has to be bigger than 128
int threads_per_block = blockDim.x;
// the first element_count is used for cache, the last 128 is used for reduction
extern __shared__ acc_t local_data[];
// maximum shared cached 128, enough for 4096 elements reduction into 4096/32= 128 elements
acc_t *shared = &(local_data[element_count]);
// number of 1024 threads reductions
int num_reductions = (element_count - 1) / threads_per_block + 1;
int offset = blockIdx.x * element_count;
int mask_offset;
int query_id = blockIdx.x % query_len;
if (pad_batches == 1){
// broadcaste the mask tensor
mask_offset = query_id * element_count;
}
else{
int mask_batch_id = blockIdx.x / attn_heads / query_len;
mask_offset = (mask_batch_id * query_len + query_id) * element_count;
}
int local_idx = threadIdx.x;
int lane = threadIdx.x % C10_WARP_SIZE;
int wid = threadIdx.x / C10_WARP_SIZE;
int warps_per_thread_block = threads_per_block / C10_WARP_SIZE;
// load the data to local data
for (int i = local_idx; i < element_count; i += threads_per_block)
{
// TODO, use the copy vector method
if (mask[mask_offset + i] == 1)
{
local_data[i] = -10000.0;
}
else
{
local_data[i] = src[offset + i] * scale;
}
}
// first find the max value
for (int i = local_idx; i < (element_count - 1) / C10_WARP_SIZE + 1; i += threads_per_block){
shared[i] = -10000.0;
}
__syncthreads();
acc_t val = -10000.0;
#pragma unroll
for (int i = 0; i < num_reductions; i++){
if (i*threads_per_block + local_idx < element_count){
val = local_data[i*threads_per_block + local_idx];
}
else{
val = -10000.0;
}
__syncthreads();
val = warp_reduce_new<acc_t, C10_WARP_SIZE, Max>(val);
if (lane==0 && wid + warps_per_thread_block * i < (element_count - 1) / C10_WARP_SIZE + 1) {
shared[wid + warps_per_thread_block*i] = val;
}
__syncthreads();
}
// final shared reduction
int shared_mem_len = (element_count - 1) / C10_WARP_SIZE + 1;
int num_warps = (shared_mem_len - 1) / C10_WARP_SIZE + 1;
while ( shared_mem_len > 1 ){
#pragma unroll
for (int i = 0; i < num_reductions; i++){
if (i*threads_per_block + local_idx < shared_mem_len){
val = shared[i*threads_per_block + local_idx];
}
else{
val = -10000.0;
}
__syncthreads();
val = warp_reduce_new<acc_t, C10_WARP_SIZE, Max>(val);
if (lane==0) {
shared[wid + warps_per_thread_block * i] = val;
}
__syncthreads();
}
shared_mem_len = num_warps;
num_warps = (shared_mem_len - 1) / C10_WARP_SIZE + 1;
}
acc_t reduced_val = shared[0];
if (reduced_val < -10000.0 + 0.1){
// if everything is masked, pay attention to nothing
#pragma unroll
for (int i = local_idx; i < element_count; i += threads_per_block){
dst[offset + i] = 0.0;
}
return;
}
// update the values
#pragma unroll
for (int i = local_idx; i < element_count; i += threads_per_block){
local_data[i] = std::exp(local_data[i] - reduced_val);
}
// find the sum
for (int i = local_idx; i < (element_count - 1) / C10_WARP_SIZE + 1; i += threads_per_block){
shared[i] = 0.0;
}
__syncthreads();
#pragma unroll
for (int i = 0; i < num_reductions; i++){
if (i*threads_per_block + local_idx < element_count){
val = local_data[i*threads_per_block + local_idx];
}
else{
val = 0.0;
}
__syncthreads();
val = warp_reduce_new<acc_t, C10_WARP_SIZE, Add>(val);
if (lane==0 && wid + warps_per_thread_block * i < (element_count - 1) / C10_WARP_SIZE + 1) {
shared[wid + warps_per_thread_block*i] = val;
}
__syncthreads();
}
shared_mem_len = (element_count - 1) / C10_WARP_SIZE + 1;
num_warps = (shared_mem_len - 1) / C10_WARP_SIZE + 1;
while ( shared_mem_len > 1 ){
#pragma unroll
for (int i = 0; i < num_reductions; i++){
if (i*threads_per_block + local_idx < shared_mem_len){
val = shared[i*threads_per_block + local_idx];
}
else{
val = 0.0;
}
__syncthreads();
val = warp_reduce_new<acc_t, C10_WARP_SIZE, Add>(val);
if (lane==0) {
shared[wid + warps_per_thread_block * i] = val;
}
__syncthreads();
}
shared_mem_len = num_warps;
num_warps = (shared_mem_len - 1) / C10_WARP_SIZE + 1;
}
reduced_val = shared[0];
#pragma unroll
for (int i = local_idx; i < element_count; i += threads_per_block){
dst[offset + i] = local_data[i] / reduced_val;
}
}
template<typename input_t, typename output_t, typename acc_t>
void dispatch_scaled_masked_softmax_forward_new(
output_t *dst,
const input_t *src,
const uint8_t *mask,
const input_t scale,
int query_seq_len,
int key_seq_len,
int batches,
int attn_heads,
int pad_batches)
{
if (key_seq_len == 0) {
return;
} else {
int batch_count = batches * attn_heads * query_seq_len;
// use 128 threads per block to maximize gpu utilization
constexpr int threads_per_block = 128;
// calculate the needed shared memory
int num_warps = (key_seq_len - 1) / C10_WARP_SIZE + 1;
dim3 blocks(batch_count, 1, 1);
dim3 threads(threads_per_block, 1, 1);
scaled_masked_softmax_warp_forward_new<input_t, output_t, acc_t>
<<<blocks, threads, sizeof(acc_t) * (key_seq_len + num_warps), at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, query_seq_len, attn_heads, key_seq_len, pad_batches);
}
}