Spaces:
Runtime error
Runtime error
template <typename T> | |
int linear_bias_forward_cuda(at::Tensor input, T *weight, at::Tensor bias, int in_features, int batch_size, int out_features, at::Tensor output, void *lt_workspace); | |
template <typename T> | |
int linear_bias_backward_cuda(T *input, T *weight, T *d_output, int in_features, int batch_size, int out_features, T *d_weight, T *d_bias, T *d_input, void *lt_workspace); | |
template <typename T> | |
int linear_gelu_linear_forward_cuda(T *input, T *weight1, T *bias1, T *weight2, T *bias2, int in_features, int hidden_features, int batch_size, int out_features, T *output1, T *output2, T *gelu_in, void *lt_workspace) ; | |
template <typename T> | |
int linear_gelu_linear_backward_cuda(T *input, T *gelu_in, T *output1, T *weight1, T *weight2, T *d_output1, T *d_output2, int in_features, int batch_size, int hidden_features, int out_features, T *d_weight1, T *d_weight2, T *d_bias1, T *d_bias2, T *d_input, void *lt_workspace); | |
at::Tensor linear_bias_forward(at::Tensor input, at::Tensor weight, at::Tensor bias) { | |
auto batch_size = input.size(0); | |
auto in_features = input.size(1); | |
int out_features = weight.size(0); | |
//auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data()); | |
// create output/workspace tensor | |
auto out = at::empty({batch_size, out_features}, input.type()); | |
//auto reserved_space = at::empty({reserved_size}, inputs[0].type()); | |
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB | |
auto lt_workspace = at::empty({1 << 22}, input.type()); | |
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, input.scalar_type(), "linear_bias_forward", [&] { | |
scalar_t* w_ptr = weight.data_ptr<scalar_t>(); | |
scalar_t* b_ptr = bias.data_ptr<scalar_t>(); | |
auto result = linear_bias_forward_cuda<scalar_t>( | |
input, | |
w_ptr, | |
bias, | |
in_features, | |
batch_size, | |
out_features, | |
out, | |
//out.data_ptr<scalar_t>(), | |
// reserved_space.data_ptr<scalar_t>(), | |
(void*) (lt_workspace.data_ptr<scalar_t>())); | |
}); | |
return {out}; | |
} | |
std::vector<at::Tensor> linear_bias_backward(at::Tensor input, at::Tensor weight, at::Tensor d_output) { | |
auto batch_size = input.size(0); | |
auto in_features = input.size(1); | |
int out_features = weight.size(0); | |
//auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data()); | |
// create output/workspace tensor | |
auto d_weight = at::empty({out_features, in_features}, input.type()); | |
auto d_bias = d_output.view({-1, out_features}).sum(0, false); | |
auto d_bias = at::empty({out_features}, input.type()); | |
auto d_input = at::empty({batch_size, in_features}, input.type()); | |
//auto reserved_space = at::empty({reserved_size}, inputs[0].type()); | |
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB | |
auto lt_workspace = at::empty({1 << 22}, input.type()); | |
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, input.scalar_type(), "linear_bias_backward", [&] { | |
scalar_t* w_ptr = weight.data_ptr<scalar_t>(); | |
scalar_t* d_b_ptr = d_bias.data_ptr<scalar_t>(); | |
auto result = linear_bias_backward_cuda<scalar_t>( | |
input.data_ptr<scalar_t>(), | |
w_ptr, | |
d_output.data_ptr<scalar_t>(), | |
in_features, | |
batch_size, | |
out_features, | |
d_weight.data_ptr<scalar_t>(), | |
d_bias.data_ptr<scalar_t>(), | |
d_input.data_ptr<scalar_t>(), | |
// reserved_space.data_ptr<scalar_t>(), | |
(void*) (lt_workspace.data_ptr<scalar_t>())); | |
}); | |
return {d_input, d_weight, d_bias}; | |
} | |
std::vector<at::Tensor> linear_gelu_linear_forward(at::Tensor input, at::Tensor weight1, at::Tensor bias1, at::Tensor weight2, at::Tensor bias2) { | |
auto batch_size = input.size(0); | |
auto in_features = input.size(1); | |
int hidden_features = weight1.size(0); | |
int out_features = weight2.size(0); | |
//auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data()); | |
// create output/workspace tensor | |
auto output1 = at::empty({batch_size, hidden_features}, input.type()); | |
auto gelu_in = at::empty({batch_size, hidden_features}, input.type()); | |
auto output2 = at::empty({batch_size, out_features}, input.type()); | |
//auto reserved_space = at::empty({reserved_size}, inputs[0].type()); | |
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB | |
auto lt_workspace = at::empty({1 << 22}, input.type()); | |
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, input.scalar_type(), "linear_gelu_linear_forward", [&] { | |
scalar_t* w1_ptr = weight1.data_ptr<scalar_t>(); | |
scalar_t* b1_ptr = bias1.data_ptr<scalar_t>(); | |
scalar_t* w2_ptr = weight2.data_ptr<scalar_t>(); | |
scalar_t* b2_ptr = bias2.data_ptr<scalar_t>(); | |
auto result = linear_gelu_linear_forward_cuda<scalar_t>( | |
input.data_ptr<scalar_t>(), | |
w1_ptr, | |
b1_ptr, | |
w2_ptr, | |
b2_ptr, | |
in_features, | |
hidden_features, | |
batch_size, | |
out_features, | |
output1.data_ptr<scalar_t>(), | |
output2.data_ptr<scalar_t>(), | |
gelu_in.data_ptr<scalar_t>(), | |
// reserved_space.data_ptr<scalar_t>(), | |
(void*) (lt_workspace.data_ptr<scalar_t>())); | |
}); | |
return {output1, output2, gelu_in}; | |
} | |
std::vector<at::Tensor> linear_gelu_linear_backward(at::Tensor input, at::Tensor gelu_in, at::Tensor output1, at::Tensor weight1, at::Tensor weight2, at::Tensor d_output2) { | |
auto batch_size = input.size(0); | |
auto in_features = input.size(1); | |
int hidden_features = weight1.size(0); | |
int out_features = weight2.size(0); | |
//auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data()); | |
// create output/workspace tensor | |
auto d_weight1 = at::empty({hidden_features, in_features}, input.type()); | |
auto d_weight2 = at::empty({out_features, hidden_features}, input.type()); | |
auto d_bias1 = at::empty({hidden_features}, input.type()); | |
auto d_bias2 = at::empty({out_features}, input.type()); | |
auto d_input = at::empty({batch_size, in_features}, input.type()); | |
auto d_output1 = at::empty({batch_size, hidden_features}, input.type()); | |
//auto reserved_space = at::empty({reserved_size}, inputs[0].type()); | |
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB | |
auto lt_workspace = at::empty({1 << 22}, input.type()); | |
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, input.scalar_type(), "linear_bias_backward", [&] { | |
//scalar_t* w_ptr = weight.data_ptr<scalar_t>(); | |
//scalar_t* d_b_ptr = d_bias.data_ptr<scalar_t>(); | |
auto result = linear_gelu_linear_backward_cuda<scalar_t>( | |
input.data_ptr<scalar_t>(), | |
gelu_in.data_ptr<scalar_t>(), | |
output1.data_ptr<scalar_t>(), | |
weight1.data_ptr<scalar_t>(), | |
weight2.data_ptr<scalar_t>(), | |
d_output1.data_ptr<scalar_t>(), | |
d_output2.data_ptr<scalar_t>(), | |
in_features, | |
batch_size, | |
hidden_features, | |
out_features, | |
d_weight1.data_ptr<scalar_t>(), | |
d_weight2.data_ptr<scalar_t>(), | |
d_bias1.data_ptr<scalar_t>(), | |
d_bias2.data_ptr<scalar_t>(), | |
d_input.data_ptr<scalar_t>(), | |
// reserved_space.data_ptr<scalar_t>(), | |
(void*) (lt_workspace.data_ptr<scalar_t>())); | |
}); | |
return {d_input, d_weight1, d_bias1, d_weight2, d_bias2}; | |
} | |
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { | |
m.def("linear_bias_forward", &linear_bias_forward, "linear bias forward"); | |
m.def("linear_bias_backward", &linear_bias_backward, "linear bias backward"); | |
m.def("linear_gelu_linear_forward", &linear_gelu_linear_forward, "linear gelu linear forward"); | |
m.def("linear_gelu_linear_backward", &linear_gelu_linear_backward, "linear gelu linear backward"); | |
} | |