Spaces:
Runtime error
Runtime error
/* coding=utf-8 | |
* Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
* | |
* Licensed under the Apache License, Version 2.0 (the "License"); | |
* you may not use this file except in compliance with the License. | |
* You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
#include <ATen/ATen.h> | |
#include "fused_rotary_positional_embedding.h" | |
#include "type_shim.h" | |
namespace fused_rope { | |
torch::Tensor fwd_cuda(const torch::Tensor &input, const torch::Tensor &freqs, | |
const bool transpose_output) { | |
// input sizes: (s, b, h, d) | |
// s: sequence length | |
// b: batch size | |
// h: head num | |
// d: dim of each head | |
const int s = input.size(0); | |
const int b = input.size(1); | |
const int h = input.size(2); | |
const int d = input.size(3); | |
// input strides | |
const int stride_s = input.stride(0); | |
const int stride_b = input.stride(1); | |
const int stride_h = input.stride(2); | |
const int stride_d = input.stride(3); | |
// freqs' shape is always (s, 1, 1, d2), so the strides are same under | |
// different memory formats | |
const int d2 = freqs.size(3); | |
// output | |
auto act_options = input.options().requires_grad(false); | |
torch::Tensor output; | |
if (transpose_output) { | |
output = torch::empty({b, s, h, d}, act_options).transpose(0, 1); | |
} else { | |
output = torch::empty({s, b, h, d}, act_options); | |
} | |
// output strides | |
const int o_stride_s = output.stride(0); | |
const int o_stride_b = output.stride(1); | |
const int o_stride_h = output.stride(2); | |
const int o_stride_d = output.stride(3); | |
DISPATCH_FLOAT_HALF_AND_BFLOAT( | |
input.scalar_type(), 0, "dispatch_fused_rope_forward", | |
dispatch_fused_rope_forward( | |
s, b, h, d, d2, stride_s, stride_b, stride_h, stride_d, o_stride_s, | |
o_stride_b, o_stride_h, o_stride_d, input.data_ptr<scalar_t_0>(), | |
freqs.data_ptr<float>(), output.data_ptr<scalar_t_0>());); | |
return output; | |
} | |
torch::Tensor bwd_cuda(const torch::Tensor &output_grads, | |
const torch::Tensor &freqs, | |
const bool transpose_output) { | |
// output_grads sizes: (s, b, h, d) | |
// s: sequence length | |
// b: batch size | |
// h: head num | |
// d: dim of each head | |
const int s = output_grads.size(0); | |
const int b = output_grads.size(1); | |
const int h = output_grads.size(2); | |
const int d = output_grads.size(3); | |
// output_grads strides | |
const int stride_s = output_grads.stride(0); | |
const int stride_b = output_grads.stride(1); | |
const int stride_h = output_grads.stride(2); | |
const int stride_d = output_grads.stride(3); | |
// freqs' shape is always (s, 1, 1, d2), so the strides are same under | |
// different memory formats | |
const int d2 = freqs.size(3); | |
auto act_options = output_grads.options().requires_grad(false); | |
torch::Tensor input_grads; | |
if (transpose_output) { | |
input_grads = torch::empty({b, s, h, d}, act_options).transpose(0, 1); | |
} else { | |
input_grads = torch::empty({s, b, h, d}, act_options); | |
} | |
const int o_stride_s = input_grads.stride(0); | |
const int o_stride_b = input_grads.stride(1); | |
const int o_stride_h = input_grads.stride(2); | |
const int o_stride_d = input_grads.stride(3); | |
DISPATCH_FLOAT_HALF_AND_BFLOAT( | |
output_grads.scalar_type(), 0, "dispatch_fused_rope_backward", | |
dispatch_fused_rope_backward( | |
s, b, h, d, d2, stride_s, stride_b, stride_h, stride_d, o_stride_s, | |
o_stride_b, o_stride_h, o_stride_d, | |
output_grads.data_ptr<scalar_t_0>(), freqs.data_ptr<float>(), | |
input_grads.data_ptr<scalar_t_0>());); | |
return input_grads; | |
} | |
#define DISPATCH_FUSED_ROPE_TYPES(TYPE1, TYPE2, NAME, ...) \ | |
switch (TYPE1) { \ | |
case at::ScalarType::Float: { \ | |
using scalar_t_0 = float; \ | |
switch (TYPE2) { \ | |
case at::ScalarType::Float: { \ | |
using scalar_t_1 = float; \ | |
__VA_ARGS__; \ | |
break; \ | |
} \ | |
default: \ | |
TORCH_CHECK(false, #NAME, " not supported for '", toString(TYPE1), \ | |
"' with '", toString(TYPE2), "'"); \ | |
} \ | |
break; \ | |
} \ | |
case at::ScalarType::Half: { \ | |
using scalar_t_0 = at::Half; \ | |
switch (TYPE2) { \ | |
case at::ScalarType::Float: { \ | |
using scalar_t_1 = float; \ | |
__VA_ARGS__; \ | |
break; \ | |
} \ | |
case at::ScalarType::Half: { \ | |
using scalar_t_1 = at::Half; \ | |
__VA_ARGS__; \ | |
break; \ | |
} \ | |
default: \ | |
TORCH_CHECK(false, #NAME, " not supported for '", toString(TYPE1), \ | |
"' with '", toString(TYPE2), "'"); \ | |
} \ | |
break; \ | |
} \ | |
case at::ScalarType::BFloat16: { \ | |
using scalar_t_0 = at::BFloat16; \ | |
switch (TYPE2) { \ | |
case at::ScalarType::Float: { \ | |
using scalar_t_1 = float; \ | |
__VA_ARGS__; \ | |
break; \ | |
} \ | |
case at::ScalarType::BFloat16: { \ | |
using scalar_t_1 = at::BFloat16; \ | |
__VA_ARGS__; \ | |
break; \ | |
} \ | |
default: \ | |
TORCH_CHECK(false, #NAME, " not supported for '", toString(TYPE1), \ | |
"' with '", toString(TYPE2), "'"); \ | |
} \ | |
break; \ | |
} \ | |
default: \ | |
TORCH_CHECK(false, #NAME, " not supported for '", toString(TYPE1), \ | |
"' with '", toString(TYPE2), "'"); \ | |
} | |
torch::Tensor fwd_cached_cuda(const torch::Tensor &input, | |
const torch::Tensor &cos, | |
const torch::Tensor &sin, | |
const bool transpose_output) { | |
// input sizes: (s, b, h, d) | |
// s: sequence length | |
// b: batch size | |
// h: head num | |
// d: dim of each head | |
const int s = input.size(0); | |
const int b = input.size(1); | |
const int h = input.size(2); | |
const int d = input.size(3); | |
// input strides | |
const int stride_s = input.stride(0); | |
const int stride_b = input.stride(1); | |
const int stride_h = input.stride(2); | |
const int stride_d = input.stride(3); | |
// cos/sin's shape is always (s, 1, 1, d2), so the strides are same under | |
// different memory formats | |
const int d2 = cos.size(3); | |
// output | |
auto act_options = input.options().requires_grad(false); | |
torch::Tensor output; | |
if (transpose_output) { | |
output = torch::empty({b, s, h, d}, act_options).transpose(0, 1); | |
} else { | |
output = torch::empty({s, b, h, d}, act_options); | |
} | |
// output strides | |
const int o_stride_s = output.stride(0); | |
const int o_stride_b = output.stride(1); | |
const int o_stride_h = output.stride(2); | |
const int o_stride_d = output.stride(3); | |
DISPATCH_FUSED_ROPE_TYPES( | |
input.scalar_type(), cos.scalar_type(), | |
"dispatch_fused_rope_cached_forward", | |
dispatch_fused_rope_cached_forward( | |
s, b, h, d, d2, stride_s, stride_b, stride_h, stride_d, o_stride_s, | |
o_stride_b, o_stride_h, o_stride_d, input.data_ptr<scalar_t_0>(), | |
cos.data_ptr<scalar_t_1>(), sin.data_ptr<scalar_t_1>(), | |
output.data_ptr<scalar_t_0>());); | |
return output; | |
} | |
torch::Tensor bwd_cached_cuda(const torch::Tensor &output_grads, | |
const torch::Tensor &cos, | |
const torch::Tensor &sin, | |
const bool transpose_output) { | |
// output_grads sizes: (s, b, h, d) | |
// s: sequence length | |
// b: batch size | |
// h: head num | |
// d: dim of each head | |
const int s = output_grads.size(0); | |
const int b = output_grads.size(1); | |
const int h = output_grads.size(2); | |
const int d = output_grads.size(3); | |
// output_grads strides | |
const int stride_s = output_grads.stride(0); | |
const int stride_b = output_grads.stride(1); | |
const int stride_h = output_grads.stride(2); | |
const int stride_d = output_grads.stride(3); | |
// cos/sin's shape is always (s, 1, 1, d2), so the strides are same under | |
// different memory formats | |
const int d2 = cos.size(3); | |
auto act_options = output_grads.options().requires_grad(false); | |
torch::Tensor input_grads; | |
if (transpose_output) { | |
input_grads = torch::empty({b, s, h, d}, act_options).transpose(0, 1); | |
} else { | |
input_grads = torch::empty({s, b, h, d}, act_options); | |
} | |
const int o_stride_s = input_grads.stride(0); | |
const int o_stride_b = input_grads.stride(1); | |
const int o_stride_h = input_grads.stride(2); | |
const int o_stride_d = input_grads.stride(3); | |
DISPATCH_FUSED_ROPE_TYPES( | |
output_grads.scalar_type(), cos.scalar_type(), | |
"dispatch_fused_rope_cached_backward", | |
dispatch_fused_rope_cached_backward( | |
s, b, h, d, d2, stride_s, stride_b, stride_h, stride_d, o_stride_s, | |
o_stride_b, o_stride_h, o_stride_d, | |
output_grads.data_ptr<scalar_t_0>(), cos.data_ptr<scalar_t_1>(), | |
sin.data_ptr<scalar_t_1>(), input_grads.data_ptr<scalar_t_0>());); | |
return input_grads; | |
} | |
torch::Tensor fwd_thd_cuda(const torch::Tensor &input, | |
const torch::Tensor &cu_seqlens, | |
const torch::Tensor &freqs) { | |
// input sizes: (t, h, d) | |
// t: cumulative sum of sequence lengths | |
// h: head num | |
// d: dim of each head | |
const int t = input.size(0); | |
const int h = input.size(1); | |
const int d = input.size(2); | |
// input strides | |
const int stride_t = input.stride(0); | |
const int stride_h = input.stride(1); | |
const int stride_d = input.stride(2); | |
// batch size | |
const int b = cu_seqlens.size(0) - 1; | |
// freqs' shape is (max_s, 1, 1, d2) | |
const int max_s = freqs.size(0); | |
const int d2 = freqs.size(3); | |
// output | |
auto act_options = input.options().requires_grad(false); | |
auto output = torch::empty({t, h, d}, act_options); | |
// output strides | |
const int o_stride_t = output.stride(0); | |
const int o_stride_h = output.stride(1); | |
const int o_stride_d = output.stride(2); | |
DISPATCH_FLOAT_HALF_AND_BFLOAT( | |
input.scalar_type(), 0, "dispatch_fused_rope_thd_forward", | |
dispatch_fused_rope_thd_forward( | |
max_s, b, h, d, d2, stride_t, stride_h, stride_d, o_stride_t, | |
o_stride_h, o_stride_d, input.data_ptr<scalar_t_0>(), | |
cu_seqlens.data_ptr<int>(), freqs.data_ptr<float>(), | |
output.data_ptr<scalar_t_0>());); | |
return output; | |
} | |
torch::Tensor bwd_thd_cuda(const torch::Tensor &output_grads, | |
const torch::Tensor &cu_seqlens, | |
const torch::Tensor &freqs) { | |
// output_grads sizes: (t, h, d) | |
// t: cumulative sum of sequence lengths | |
// h: head num | |
// d: dim of each head | |
const int t = output_grads.size(0); | |
const int h = output_grads.size(1); | |
const int d = output_grads.size(2); | |
// output_grads strides | |
const int stride_t = output_grads.stride(0); | |
const int stride_h = output_grads.stride(1); | |
const int stride_d = output_grads.stride(2); | |
// batch size | |
const int b = cu_seqlens.size(0) - 1; | |
// freqs' shape is (max_s, 1, 1, d2) | |
const int max_s = freqs.size(0); | |
const int d2 = freqs.size(3); | |
auto act_options = output_grads.options().requires_grad(false); | |
auto input_grads = torch::empty({t, h, d}, act_options); | |
const int o_stride_t = input_grads.stride(0); | |
const int o_stride_h = input_grads.stride(1); | |
const int o_stride_d = input_grads.stride(2); | |
DISPATCH_FLOAT_HALF_AND_BFLOAT( | |
output_grads.scalar_type(), 0, "dispatch_fused_rope_thd_backward", | |
dispatch_fused_rope_thd_backward( | |
max_s, b, h, d, d2, stride_t, stride_h, stride_d, o_stride_t, | |
o_stride_h, o_stride_d, output_grads.data_ptr<scalar_t_0>(), | |
cu_seqlens.data_ptr<int>(), freqs.data_ptr<float>(), | |
input_grads.data_ptr<scalar_t_0>());); | |
return input_grads; | |
} | |
} // end namespace fused_rope | |