Spaces:
Runtime error
Runtime error
File size: 24,338 Bytes
8a42f8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import logging
import unittest
import typing
import torch
import torch.nn as nn
from torch.testing._internal import common_utils
from apex.transformer import parallel_state
from apex.transformer.tensor_parallel import layers
from apex.transformer.testing.commons import set_random_seed
from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase
from apex.transformer.testing.distributed_test_base import UccDistributedTestBase
logging.getLogger("torch").setLevel(logging.WARNING)
logging.getLogger("apex").setLevel(logging.WARNING)
# N.B.(mkozuki): Disable TF32 matrix multiply.
# Matrices used in this test are so small that TF32 matmul
# can be less precise so that `self.assertEqual` raises.
torch.backends.cuda.matmul.allow_tf32 = False
class TensorParallelLayerTestBase:
BATCH_SIZE: int = 8
SEQUENCE_LENGTH: int = 128
VOCAB_SIZE: int = 1024
HIDDEN_SIZE: int = 256
INPUT_SIZE_COEFF: int = 256
OUTPUT_SIZE_COEFF: int = 256
SEED: int = 123456
@property
def tensor_shape(self) -> typing.Sequence[int]:
return [self.SEQUENCE_LENGTH, self.BATCH_SIZE, self.HIDDEN_SIZE]
@torch.no_grad()
@unittest.skipIf(torch.cuda.device_count() < 2, "Requires >=2 GPUs")
def test_all_gather_parity(self) -> None:
if self.DISTRIBUTED_BACKEND == "ucc":
self.skipTest("torch_ucc does NOT support `torch.distributed._all_gather_base` as of 2022/06/15")
from torch.distributed.distributed_c10d import all_gather, _all_gather_base # NOQA
for tensor_model_parallel_world_size in range(1, self.world_size + 1):
if self.world_size % tensor_model_parallel_world_size:
continue
parallel_state.initialize_model_parallel(
tensor_model_parallel_size_=tensor_model_parallel_world_size,
)
tensor_model_parallel_rank = parallel_state.get_tensor_model_parallel_rank()
cur_tensor_model_device = torch.device(f"cuda:{tensor_model_parallel_rank}")
with torch.no_grad():
tensor = tensor_model_parallel_rank * torch.ones(
self.tensor_shape, dtype=torch.float32, device=cur_tensor_model_device)
numel = tensor.numel()
numel_gathered = tensor_model_parallel_world_size * numel
gathered = torch.empty(
torch.Size((numel_gathered,)),
device=cur_tensor_model_device,
dtype=torch.float32,
requires_grad=False,
)
chunks = [
gathered[i * numel : (i + 1) * numel]
for i in range(tensor_model_parallel_world_size)
]
all_gather(chunks, tensor, group=parallel_state.get_tensor_model_parallel_group())
gathered_for_base = torch.empty(
torch.Size((numel_gathered,)),
device=cur_tensor_model_device,
dtype=torch.float32,
requires_grad=False,
)
_all_gather_base(
gathered_for_base,
tensor,
group=parallel_state.get_tensor_model_parallel_group(),
)
msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}"
self.assertEqual(gathered, gathered_for_base, msg=msg)
parallel_state.destroy_model_parallel()
@torch.no_grad()
@unittest.skipIf(torch.cuda.device_count() < 2, "Requires >=2 GPUs")
def test_reduce_scatter_parity(self) -> None:
if self.DISTRIBUTED_BACKEND == "ucc":
self.skipTest("torch_ucc does NOT support `torch.distributed._reduce_scatter_base` as of 2022/06/15")
from torch.distributed.distributed_c10d import reduce_scatter, _reduce_scatter_base # NOQA
for tensor_model_parallel_world_size in range(2, self.world_size + 1):
if self.world_size % tensor_model_parallel_world_size:
continue
parallel_state.initialize_model_parallel(
tensor_model_parallel_size_=tensor_model_parallel_world_size,
)
tensor_model_parallel_rank = parallel_state.get_tensor_model_parallel_rank()
cur_tensor_model_device = torch.device(f"cuda:{tensor_model_parallel_rank}")
with torch.no_grad():
input = torch.cat([
i * torch.ones(self.tensor_shape, dtype=torch.float32, device=cur_tensor_model_device)
for i in range(tensor_model_parallel_world_size)
])
input_list = [t.clone() for t in input.chunk(tensor_model_parallel_world_size)]
output = torch.empty(
self.tensor_shape,
device=cur_tensor_model_device,
dtype=torch.float32,
requires_grad=False,
)
reduce_scatter(
output, input_list,
group=parallel_state.get_tensor_model_parallel_group(),
)
output_for_base = torch.empty(
self.tensor_shape,
device=cur_tensor_model_device,
dtype=torch.float32,
requires_grad=False,
)
_reduce_scatter_base(
output_for_base,
input,
group=parallel_state.get_tensor_model_parallel_group(),
)
msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}"
self.assertEqual(output, output_for_base, msg=msg)
self.assertEqual(input, torch.cat(input_list), msg=msg)
parallel_state.destroy_model_parallel()
def test_parallel_embedding(self) -> None:
for tensor_model_parallel_world_size in range(1, self.world_size + 1):
if self.world_size % tensor_model_parallel_world_size:
continue
parallel_state.initialize_model_parallel(
tensor_model_parallel_size_=tensor_model_parallel_world_size,
)
set_random_seed(self.SEED + 1)
input_tensor = torch.randint(
0,
self.VOCAB_SIZE,
(
self.BATCH_SIZE,
self.SEQUENCE_LENGTH,
),
device="cuda",
)
loss_weight = torch.randn(
(
self.BATCH_SIZE,
self.SEQUENCE_LENGTH,
self.HIDDEN_SIZE,
),
device="cuda",
)
set_random_seed(self.SEED)
embedding_torch = nn.Embedding(
self.VOCAB_SIZE,
self.HIDDEN_SIZE,
).cuda()
output_torch = embedding_torch(input_tensor)
loss_torch = torch.mul(output_torch, loss_weight).sum()
loss_torch.backward()
# N.B.(mkozuki): With affine weight initialization on GPU,
# it's super difficult to keep the consistency with nn.Embedding.
# Thus, turning on `use_cpu_initialization`.
set_random_seed(self.SEED)
embedding_vocab_parallel = layers.VocabParallelEmbedding(
self.VOCAB_SIZE,
self.HIDDEN_SIZE,
init_method=nn.init.normal_,
use_cpu_initialization=True,
).cuda()
output_vocab_parallel = embedding_vocab_parallel(input_tensor)
loss_vocab_parallel = torch.mul(
output_vocab_parallel, loss_weight
).sum()
loss_vocab_parallel.backward()
msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}"
self.assertEqual(output_torch, output_vocab_parallel, msg=msg)
self.assertEqual(loss_torch, loss_vocab_parallel, msg=msg)
splitted_weight_torch = torch.split(
embedding_torch.weight.grad,
self.VOCAB_SIZE
// tensor_model_parallel_world_size,
0,
)[parallel_state.get_tensor_model_parallel_rank()]
self.assertEqual(
splitted_weight_torch, embedding_vocab_parallel.weight.grad, msg=msg,
)
parallel_state.destroy_model_parallel()
def _affine_weight_init_test_impl(
self, init_device: str, is_column_parallel: bool
) -> None:
dim = int(not is_column_parallel)
for tensor_model_parallel_world_size in range(1, self.world_size + 1):
if self.world_size % tensor_model_parallel_world_size:
continue
parallel_state.initialize_model_parallel(
tensor_model_parallel_size_=tensor_model_parallel_world_size
)
input_size: int = self.INPUT_SIZE_COEFF * tensor_model_parallel_world_size
output_size: int = self.OUTPUT_SIZE_COEFF * tensor_model_parallel_world_size
weight_shape = (
(self.OUTPUT_SIZE_COEFF, input_size)
if is_column_parallel
else (output_size, self.INPUT_SIZE_COEFF)
)
weight = torch.empty(weight_shape)
set_random_seed(self.SEED)
sharding_dim_size = (
self.OUTPUT_SIZE_COEFF
if is_column_parallel
else self.INPUT_SIZE_COEFF
)
if init_device == "cpu":
layers._initialize_affine_weight_cpu(
weight,
output_size,
input_size,
sharding_dim_size,
dim,
nn.init.normal_,
params_dtype=torch.float32,
)
else:
layers._initialize_affine_weight_gpu(
weight, torch.nn.init.normal_, dim
)
# Target
set_random_seed(self.SEED)
if init_device == "cpu":
main_weight = torch.empty(output_size, input_size)
nn.init.normal_(main_weight)
curr_weight = torch.split(main_weight, sharding_dim_size, dim=dim)[
parallel_state.get_tensor_model_parallel_rank()
]
else:
curr_weight = torch.empty(*weight_shape)
nn.init.normal_(curr_weight)
self.assertEqual(
curr_weight, weight, msg=f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}")
parallel_state.destroy_model_parallel()
def test_affine_weight_init_column_parallel_cpu(self) -> None:
self._affine_weight_init_test_impl(init_device="cpu", is_column_parallel=True)
def test_affine_weight_init_column_parallel_gpu(self) -> None:
self._affine_weight_init_test_impl(init_device="gpu", is_column_parallel=True)
def test_affine_weight_init_row_parallel_cpu(self) -> None:
self._affine_weight_init_test_impl(init_device="cpu", is_column_parallel=False)
def test_affine_weight_init_row_parallel_gpu(self) -> None:
self._affine_weight_init_test_impl(init_device="gpu", is_column_parallel=False)
def test_row_parallel_linear(self) -> None:
self._row_parallel_linear_test_impl(False, False, False)
def test_row_parallel_linear_gradient_accumulation_fusion(self) -> None:
self._row_parallel_linear_test_impl(True, False, False)
def test_row_parallel_linear_gradient_accumulation_fusion_in_fp16(self) -> None:
self._row_parallel_linear_test_impl(True, True, False)
# fails on native ucc and torch ucc: ucc does not support reduce scatter
@unittest.skipIf(torch.cuda.device_count() < 2, "Sequence Parallel requires >=2 GPUs")
def test_row_parallel_linear_sequence_parallel(self) -> None:
self._row_parallel_linear_test_impl(False, False, True)
# TODO(mkozuki): Merge this with `_column_parallel_linear_test_impl`
# Note that `input_is_parallel` is unique to `RowParallelLinear` which could make the merge complicated.
def _row_parallel_linear_test_impl(
self,
gradient_accumulation_fusion: bool,
accumulation_in_fp16: bool,
sequence_parallel_enabled: bool,
) -> None:
tensor_shape = (
self.SEQUENCE_LENGTH,
self.BATCH_SIZE,
self.HIDDEN_SIZE,
)
for tensor_model_parallel_world_size in range(
1 + int(sequence_parallel_enabled), self.world_size + 1
):
if self.world_size % tensor_model_parallel_world_size:
continue
parallel_state.initialize_model_parallel(
tensor_model_parallel_size_=tensor_model_parallel_world_size,
)
set_random_seed(self.SEED)
linear = layers.RowParallelLinear(
self.HIDDEN_SIZE,
self.HIDDEN_SIZE,
keep_master_weight_for_test=True,
params_dtype=torch.float32,
use_cpu_initialization=True,
gradient_accumulation_fusion=gradient_accumulation_fusion,
accumulation_in_fp16=accumulation_in_fp16,
sequence_parallel_enabled=sequence_parallel_enabled,
# n.b.(mkozuki): RowParallelLinear is constructed with `input_is_parallel=True`
# by default, e.g. https://github.com/NVIDIA/NeMo/blob/782b4e1652aaa43c8be390d9\
# db0dc89544afa080/nemo/collections/nlp/modules/common/megatron/transformer.py#L204
input_is_parallel=True,
).cuda()
if accumulation_in_fp16:
linear = linear.half()
# Simulate the situation where fusion of weight grad calculation and gradient accumulation is enabled.
if gradient_accumulation_fusion:
with torch.no_grad():
linear.weight.main_grad = torch.zeros_like(linear.weight)
msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}"
with torch.no_grad():
orig_input_tensor = torch.randn(tensor_shape, requires_grad=True, device="cuda")
orig_loss_weight = torch.randn(tensor_shape, device="cuda")
input_tensor = orig_input_tensor.chunk(
chunks=tensor_model_parallel_world_size,
dim=2,
)[parallel_state.get_tensor_model_parallel_rank()].contiguous()
if sequence_parallel_enabled:
loss_weight = orig_loss_weight.chunk(
chunks=tensor_model_parallel_world_size,
dim=0,
)[parallel_state.get_tensor_model_parallel_rank()]
else:
loss_weight = orig_loss_weight
if accumulation_in_fp16:
orig_input_tensor = orig_input_tensor.half()
input_tensor = input_tensor.half()
loss_weight = loss_weight.half()
input_tensor.requires_grad_()
output, _ = linear(input_tensor)
loss = torch.mul(output, loss_weight).sum()
loss.backward()
self.assertIsNotNone(input_tensor.grad, msg=msg)
ref_linear = nn.Linear(
in_features=self.HIDDEN_SIZE,
out_features=self.HIDDEN_SIZE,
bias=False,
device="cuda",
)
with torch.no_grad():
dldy = orig_loss_weight.clone()
x = orig_input_tensor.clone()
ref_linear.weight.copy_(linear.master_weight)
if accumulation_in_fp16:
ref_linear = ref_linear.half()
x.requires_grad_()
expected_output = ref_linear(x)
expected_loss = torch.mul(expected_output, dldy).sum()
expected_loss.backward()
if not accumulation_in_fp16:
if sequence_parallel_enabled:
self.assertEqual(
x=output,
y=expected_output.chunk(
chunks=tensor_model_parallel_world_size,
dim=0,
)[parallel_state.get_tensor_model_parallel_rank()],
msg=msg,
)
else:
self.assertEqual(
x=output,
y=expected_output,
msg=msg,
)
grad_attr_name = "main_grad" if gradient_accumulation_fusion else "grad"
# NOTE(mkozuki): Numerical errors seems to be enlarged by tensor model parallel.
if tensor_model_parallel_world_size == 1:
self.assertEqual(
x=getattr(linear.weight, grad_attr_name),
y=ref_linear.weight.grad.chunk(
chunks=tensor_model_parallel_world_size,
dim=0,
)[parallel_state.get_tensor_model_parallel_rank()],
msg=msg,
)
parallel_state.destroy_model_parallel()
def test_column_parallel_linear(self):
self._column_parallel_linear_test_impl(False, False, False, False)
def test_column_parallel_linear_async(self):
self._column_parallel_linear_test_impl(True, False, False, False)
def test_column_parallel_linear_gradient_accumulation_fusion(self):
self._column_parallel_linear_test_impl(False, True, False, False)
def test_column_parallel_linear_gradient_accumulation_fusion_in_fp16(self):
self._column_parallel_linear_test_impl(False, True, True, False)
def test_column_parallel_linear_sequence_parallel(self):
if self.DISTRIBUTED_BACKEND == "ucc":
self.skipTest("Backward's reduce_scatter fails. as of 2022/06/15")
self._column_parallel_linear_test_impl(False, False, False, True)
@unittest.skipIf(torch.cuda.device_count() < 2, "Sequence Parallel requires >= 2 GPUs")
def test_column_parallel_linear_exception(self):
with self.assertRaisesRegex(
RuntimeError,
"`async_tensor_model_parallel_allreduce` and `sequence_parallel_enabled` cannot be enabled at the same time.",
):
self._column_parallel_linear_test_impl(True, False, False, True)
def _column_parallel_linear_test_impl(
self,
async_tensor_model_parallel_allreduce: bool,
gradient_accumulation_fusion: bool,
accumulation_in_fp16: bool,
sequence_parallel_enabled: bool,
):
for tensor_model_parallel_world_size in range(1, self.world_size + 1):
if async_tensor_model_parallel_allreduce and sequence_parallel_enabled:
if tensor_model_parallel_world_size == 1:
continue
if self.world_size % tensor_model_parallel_world_size:
continue
msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}"
parallel_state.initialize_model_parallel(
tensor_model_parallel_size_=tensor_model_parallel_world_size,
)
input_tensor_shape = self.tensor_shape
expected_output_shape = self.tensor_shape
# When sequence parallel, `gather_output` is disabled, i.e.,
# output of matmul isn't gathered in dimension of feature/hidden (last dim).
if sequence_parallel_enabled:
expected_output_shape[-1] //= tensor_model_parallel_world_size
# tensor's shape is [sequence length, batch size, hidden size]
set_random_seed(self.SEED)
linear = layers.ColumnParallelLinear(
self.HIDDEN_SIZE,
self.HIDDEN_SIZE,
bias=False,
keep_master_weight_for_test=True,
params_dtype=torch.float32,
use_cpu_initialization=True,
gather_output=not sequence_parallel_enabled,
no_async_tensor_model_parallel_allreduce=not async_tensor_model_parallel_allreduce,
gradient_accumulation_fusion=gradient_accumulation_fusion,
accumulation_in_fp16=accumulation_in_fp16,
sequence_parallel_enabled=sequence_parallel_enabled,
).cuda()
if accumulation_in_fp16:
linear = linear.half()
# Simulate the situation where fusion of weight grad calculation and gradient accumulation happens.
if gradient_accumulation_fusion:
with torch.no_grad():
linear.weight.main_grad = torch.zeros_like(linear.weight)
orig_input_tensor = torch.randn(input_tensor_shape, device="cuda", requires_grad=True)
if accumulation_in_fp16:
orig_input_tensor = orig_input_tensor.half()
if sequence_parallel_enabled:
input_tensor = list(
orig_input_tensor.chunk(tensor_model_parallel_world_size, dim=0)
)[parallel_state.get_tensor_model_parallel_rank()]
else:
input_tensor = orig_input_tensor
output, _ = linear(input_tensor)
# The order of dimension is expected to be (sequence, batch, hidden)
self.assertEqual(output.shape, expected_output_shape, msg=msg)
orig_loss_weight = torch.randn(input_tensor_shape, device="cuda")
if accumulation_in_fp16:
orig_loss_weight = orig_loss_weight.half()
if sequence_parallel_enabled:
loss_weight = orig_loss_weight.chunk(
tensor_model_parallel_world_size, dim=2,
)[parallel_state.get_tensor_model_parallel_rank()]
else:
loss_weight = orig_loss_weight
loss = torch.mul(output, loss_weight).sum()
loss.backward()
with torch.no_grad():
dldy = orig_loss_weight.clone()
x = orig_input_tensor.clone()
ref_linear = nn.Linear(
in_features=self.HIDDEN_SIZE,
out_features=self.HIDDEN_SIZE,
bias=False,
device="cuda",
)
if accumulation_in_fp16:
ref_linear = ref_linear.half()
# NOTE(mkozuki): `master_weight` is available because `keep_master_weight_for_test` is set.
ref_linear.weight.copy_(linear.master_weight)
x.requires_grad_()
expected_output = ref_linear(x)
if sequence_parallel_enabled:
chunk = expected_output.chunk(
tensor_model_parallel_world_size,
dim=2,
)[parallel_state.get_tensor_model_parallel_rank()]
self.assertEqual(
x=output,
y=chunk,
msg=msg,
)
else:
self.assertEqual(
x=output,
y=expected_output,
msg=msg,
)
expected_loss = torch.mul(expected_output, dldy).sum()
expected_loss.backward()
grad_attr_name = "main_grad" if gradient_accumulation_fusion else "grad"
# NOTE(mkozuki): Numerical errors seems to be enlarged by tensor model parallel.
if tensor_model_parallel_world_size == 1:
self.assertEqual(
x=getattr(linear.weight, grad_attr_name),
y=ref_linear.weight.grad.chunk(
chunks=tensor_model_parallel_world_size,
dim=0,
)[parallel_state.get_tensor_model_parallel_rank()],
msg=msg,
)
parallel_state.destroy_model_parallel()
class NcclTensorParallelLayerTest(TensorParallelLayerTestBase, NcclDistributedTestBase):
pass
class UccTensorParallelLayerTest(TensorParallelLayerTestBase, UccDistributedTestBase):
pass
if __name__ == "__main__":
common_utils.run_tests()
|