Spaces:
Runtime error
Runtime error
File size: 4,735 Bytes
8a42f8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
#include <torch/extension.h>
#include <torch/torch.h>
#include <vector>
#include <stdio.h>
size_t get_mlp_reserved_space(int64_t batch_size, int num_layers, const int* output_features);
template <typename T>
size_t get_mlp_bp_workspace_in_bytes(int batch_size, int num_layers, const int* output_features);
template <typename T>
int mlp_fp(
T* X,
int input_features,
int batch_size,
T** WPtr,
int num_layers,
int* output_features,
T** BPtr,
T* Y,
T* reserved_space,
int use_bias,
int activation,
void* lt_workspace);
template <typename T>
int mlp_bp(
T* X,
T* Y,
int input_features,
int batch_size,
T** WPtr,
int num_layers,
int* output_features,
T* dY,
T* reserved_space,
T* work_space,
T* dX,
T** dwPtr,
T** dbPtr,
bool requires_grad,
int use_bias,
int activation);
std::vector<at::Tensor> mlp_forward(int use_bias, int activation, std::vector<at::Tensor> inputs) {
auto num_layers = inputs.size() - 1;
if (use_bias) {
// inputs contains (input, weights, biases)
num_layers /= 2;
}
auto batch_size = inputs[0].size(0);
auto input_features = inputs[0].size(1);
std::vector<int> output_features;
for (int i = 0; i < num_layers; i++) {
output_features.push_back(inputs[i + 1].size(0));
}
auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());
// create output/workspace tensor
auto out = at::empty({batch_size, output_features.back()}, inputs[0].type());
auto reserved_space = at::empty({static_cast<long>(reserved_size)}, inputs[0].type());
// allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
auto lt_workspace = at::empty({1 << 22}, inputs[0].type());
AT_DISPATCH_FLOATING_TYPES_AND_HALF(inputs[0].type(), "mlp_forward", [&] {
std::vector<scalar_t*> w_ptr;
std::vector<scalar_t*> b_ptr;
for (int i = 0; i < num_layers; i++) {
w_ptr.push_back(inputs[i + 1].data_ptr<scalar_t>());
if (use_bias) {
b_ptr.push_back(inputs[i + 1 + num_layers].data_ptr<scalar_t>());
}
}
auto result = mlp_fp<scalar_t>(
inputs[0].data_ptr<scalar_t>(),
input_features,
batch_size,
w_ptr.data(),
num_layers,
output_features.data(),
b_ptr.data(),
out.data_ptr<scalar_t>(),
reserved_space.data_ptr<scalar_t>(),
use_bias,
activation,
(void*) (lt_workspace.data_ptr<scalar_t>()));
});
return {out, reserved_space};
}
std::vector<at::Tensor> mlp_backward(
int use_bias,
int activation,
at::Tensor grad_o,
std::vector<at::Tensor> fprop_outputs,
std::vector<at::Tensor> inputs) {
auto num_layers = inputs.size() - 1;
if (use_bias) {
// inputs contains (input, weights, biases)
num_layers /= 2;
}
auto batch_size = inputs[0].size(0);
auto input_features = inputs[0].size(1);
bool requires_grad = inputs[0].requires_grad();
std::vector<int> output_features;
for (int i = 0; i < num_layers; i++) {
output_features.push_back(inputs[i + 1].size(0));
}
// create outputs, length of inputs
std::vector<at::Tensor> outputs;
for (int i = 0; i < inputs.size(); i++) {
outputs.push_back(at::empty(inputs[i].sizes(), inputs[i].type())); // clone for testing now
}
AT_DISPATCH_FLOATING_TYPES_AND_HALF(inputs[0].type(), "mlp_backward", [&] {
std::vector<scalar_t*> w_ptr;
for (int i = 0; i < num_layers; i++) {
w_ptr.push_back(inputs[i + 1].data_ptr<scalar_t>());
}
std::vector<scalar_t*> outputs_ptr;
for (int i = 0; i < inputs.size(); i++) {
outputs_ptr.push_back(outputs[i].data_ptr<scalar_t>());
}
auto work_size =
get_mlp_bp_workspace_in_bytes<scalar_t>(batch_size, num_layers, output_features.data());
// auto work_space = at::empty({work_size*4}, at::kByte);
auto work_space = at::empty({static_cast<long>(work_size / sizeof(scalar_t))}, inputs[0].type());
auto result = mlp_bp<scalar_t>(
inputs[0].data_ptr<scalar_t>(),
fprop_outputs[0].data_ptr<scalar_t>(),
input_features,
batch_size,
w_ptr.data(),
num_layers,
output_features.data(),
grad_o.contiguous().data_ptr<scalar_t>(),
fprop_outputs[1].data_ptr<scalar_t>(),
work_space.data_ptr<scalar_t>(),
outputs_ptr[0],
outputs_ptr.data() + 1,
outputs_ptr.data() + 1 + num_layers,
requires_grad,
use_bias,
activation);
});
return outputs;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &mlp_forward, "MLP forward");
m.def("backward", &mlp_backward, "MLP backward");
}
|