File size: 40,157 Bytes
8a42f8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
#include "ATen/ATen.h"
#include "ATen/AccumulateType.h"
#include "ATen/cuda/CUDAContext.h"
#include "ATen/cuda/DeviceUtils.cuh"

#include <cuda.h>
#include <cuda_runtime.h>

#include "type_shim.h"
#include "static_switch.h"

template<typename U> __device__
void cuWelfordOnlineSum(
  const U curr,
  U& mu,
  U& sigma2,
  U& count)
{
  count = count + U(1);
  U delta = curr - mu;
  U lmean = mu + delta / count;
  mu = lmean;
  U delta2 = curr - lmean;
  sigma2 = sigma2 + delta * delta2;
}

template<typename U> __device__
void cuChanOnlineSum(
  const U muB,
  const U sigma2B,
  const U countB,
  U& mu,
  U& sigma2,
  U& count)
{
  U delta = muB - mu;
  U nA = count;
  U nB = countB;
  count = count + countB;
  U nX = count;
  if (nX > U(0)) {
    nA = nA / nX;
    nB = nB / nX;
    mu = nA*mu + nB*muB;
    sigma2 = sigma2 + sigma2B + delta * delta * nA * nB * nX;
  } else {
    mu = U(0);
    sigma2 = U(0);
  }
}

template<typename U> __device__
void cuRMSOnlineSum(
  const U curr,
  U& sigma2)
{
  sigma2 = sigma2 + curr * curr;
}

template<typename U> __device__
void cuChanRMSOnlineSum(
  const U sigma2B,
  U& sigma2)
{
  sigma2 = sigma2 + sigma2B;
}


template<typename T, typename U> __device__
void cuWelfordMuSigma2(
  const T* __restrict__ vals,
  const int n1,
  const int n2,
  const int i1,
  U& mu,
  U& sigma2,
  U* buf,
  bool rms_only)
{
  // Assumptions:
  // 1) blockDim.x == warpSize
  // 2) Tensor is contiguous
  // 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
  //
  // compute variance and mean over n2
  U count = U(0);
  mu= U(0);
  sigma2 = U(0);
  if (i1 < n1) {
    // one warp normalizes one n1 index,
    // synchronization is implicit
    // initialize with standard Welford algorithm
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
    const T* lvals = vals + i1*n2;
    int l = 4*thrx;
    for (;  l+3 < n2;  l+=4*numx) {
      for (int k = 0;  k < 4;  ++k) {
        U curr = static_cast<U>(lvals[l+k]);
        if (!rms_only) {
          cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
        } else {
          cuRMSOnlineSum<U>(curr, sigma2);
        }
      }
    }
    for (;  l < n2;  ++l) {
      U curr = static_cast<U>(lvals[l]);
      if (!rms_only) {
        cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
      } else {
       cuRMSOnlineSum<U>(curr, sigma2);
      }
    }
    // intra-warp reductions
    for (int l = 0;  l <= 4;  ++l) {
      int srcLaneB = (threadIdx.x+(1<<l))&31;
      U sigma2B = WARP_SHFL(sigma2, srcLaneB);
      if (!rms_only) {
        U muB = WARP_SHFL(mu, srcLaneB);
        U countB = WARP_SHFL(count, srcLaneB);
        cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
      } else {
        cuChanRMSOnlineSum<U>(sigma2B, sigma2);
      }
    }
    // threadIdx.x == 0 has correct values for each warp
    // inter-warp reductions
    if (blockDim.y > 1) {
      U* ubuf = (U*)buf;
      U* ibuf = (U*)(ubuf + blockDim.y);
      for (int offset = blockDim.y/2;  offset > 0;  offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int wrt_y = threadIdx.y - offset;
          if (!rms_only) {
            ubuf[2*wrt_y] = mu;
            ibuf[wrt_y] = count;
          }
          ubuf[2*wrt_y+1] = sigma2;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.x == 0 && threadIdx.y < offset) {
          U sigma2B = ubuf[2*threadIdx.y+1];
          if (!rms_only) {
            U muB = ubuf[2*threadIdx.y];
            U countB = ibuf[threadIdx.y];
            cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
          } else {
            cuChanRMSOnlineSum<U>(sigma2B,sigma2);
          }
        }
        __syncthreads();
      }
      // threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
      if (threadIdx.x == 0 && threadIdx.y == 0) {
        if (!rms_only) {
          ubuf[0] = mu;
        }
        ubuf[1] = sigma2;
      }
      __syncthreads();
      if (!rms_only) {
        mu = ubuf[0];
      }
      sigma2 = ubuf[1]/U(n2);
      // don't care about final value of count, we know count == n2
    } else {
      if (!rms_only) {
        mu = WARP_SHFL(mu, 0);
      }
      sigma2 = WARP_SHFL(sigma2/U(n2), 0);
    }
  }
}

template<> __device__
void cuWelfordMuSigma2(
  const at::Half* __restrict__ vals,
  const int n1,
  const int n2,
  const int i1,
  float& mu,
  float& sigma2,
  float* buf,
  bool rms_only)
{
  // Assumptions:
  // 1) blockDim.x == warpSize
  // 2) Tensor is contiguous
  // 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
  //
  // compute variance and mean over n2
  float count = 0.0f;
  mu= float(0);
  sigma2 = float(0);
  if (i1 < n1) {
    // one warp normalizes one n1 index,
    // synchronization is implicit
    // initialize with standard Welford algorithm
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
    const at::Half* lvals = vals + i1*n2;
    int l = 8*thrx;
    if ((((size_t)lvals)&3) != 0) {
      // 16 bit alignment
      // first thread consumes first point
      if (thrx == 0) {
        float curr = static_cast<float>(lvals[0]);
        if (!rms_only) {
          cuWelfordOnlineSum(curr,mu,sigma2,count);
        } else {
          cuRMSOnlineSum(curr, sigma2);
        }

      }
      ++l;
    }
    // at this point, lvals[l] are 32 bit aligned for all threads.
    for (;  l+7 < n2;  l+=8*numx) {
      for (int k = 0;  k < 8;  k+=2) {
        float2 curr = __half22float2(*((__half2*)(lvals+l+k)));
        if (!rms_only) {
          cuWelfordOnlineSum(curr.x,mu,sigma2,count);
          cuWelfordOnlineSum(curr.y,mu,sigma2,count);
        } else {
          cuRMSOnlineSum(curr.x, sigma2);
          cuRMSOnlineSum(curr.y, sigma2);
        }
      }
    }
    for (;  l < n2;  ++l) {
      float curr = static_cast<float>(lvals[l]);
      if (!rms_only) {
        cuWelfordOnlineSum(curr,mu,sigma2,count);
      } else {
        cuRMSOnlineSum(curr, sigma2);
      }
    }
    // intra-warp reductions
    for (int l = 0;  l <= 4;  ++l) {
      int srcLaneB = (threadIdx.x+(1<<l))&31;
      float sigma2B = WARP_SHFL(sigma2, srcLaneB);
      if (!rms_only) {
        float muB = WARP_SHFL(mu, srcLaneB);
        float countB = WARP_SHFL(count, srcLaneB);
        cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
      } else {
        cuChanRMSOnlineSum(sigma2B, sigma2);
      }
    }
    // threadIdx.x == 0 has correct values for each warp
    // inter-warp reductions
    if (blockDim.y > 1) {
      float* ubuf = (float*)buf;
      float* ibuf = (float*)(ubuf + blockDim.y);
      for (int offset = blockDim.y/2;  offset > 0;  offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int wrt_y = threadIdx.y - offset;
          ubuf[2*wrt_y+1] = sigma2;
          if (!rms_only) {
            ubuf[2*wrt_y] = mu;
            ibuf[wrt_y] = count;
          }
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.x == 0 && threadIdx.y < offset) {
          float sigma2B = ubuf[2*threadIdx.y+1];
          if (!rms_only) {
            float muB = ubuf[2*threadIdx.y];
            float countB = ibuf[threadIdx.y];
            cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
          } else {
            cuChanRMSOnlineSum(sigma2B, sigma2);
          }
        }
        __syncthreads();
      }
      // threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
      if (threadIdx.x == 0 && threadIdx.y == 0) {
        if (!rms_only) {
          ubuf[0] = mu;
        }
        ubuf[1] = sigma2;
      }
      __syncthreads();
      if (!rms_only) {
        mu = ubuf[0];
      }
      sigma2 = ubuf[1]/float(n2);
      // don't care about final value of count, we know count == n2
    } else {
      if (!rms_only) {
        mu = WARP_SHFL(mu, 0);
      }
      sigma2 = WARP_SHFL(sigma2/float(n2), 0);
    }
  }
}

template<typename U> U rsqrt(U v) {
  return U(1) / sqrt(v);
}
template<> float rsqrt(float v) {
  return rsqrtf(v);
}
template<> double rsqrt(double v) {
  return rsqrt(v);
}

namespace {
// This is the un-specialized struct.  Note that we prevent instantiation of this
// struct by putting an undefined symbol in the function body so it won't compile.
//  template <typename T>
//  struct SharedMemory
//  {
//      // Ensure that we won't compile any un-specialized types
//      __device__ T *getPointer()
//      {
//          extern __device__ void error(void);
//          error();
//          return NULL;
//      }
//  };
// https://github.com/NVIDIA/apex/issues/246
template <typename T>
struct SharedMemory;

template <>
struct SharedMemory <float>
{
    __device__ float *getPointer()
    {
        extern __shared__ float s_float[];
        return s_float;
    }
};

template <>
struct SharedMemory <double>
{
    __device__ double *getPointer()
    {
        extern __shared__ double s_double[];
        return s_double;
    }
};
}

template<typename T, typename U, typename V> __device__
void cuApplyLayerNorm_(
  V* __restrict__ output_vals,
  U* __restrict__ mean,
  U* __restrict__ invvar,
  const T* __restrict__ vals,
  const int n1,
  const int n2,
  const U epsilon,
  const V* __restrict__ gamma,
  const V* __restrict__ beta,
  bool rms_only
  )
{
  // Assumptions:
  // 1) blockDim.x == warpSize
  // 2) Tensors are contiguous
  //
  for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
    SharedMemory<U> shared;
    U* buf = shared.getPointer();
    U mu,sigma2;
    cuWelfordMuSigma2(vals,n1,n2,i1,mu,sigma2,buf,rms_only);

    const T* lvals = vals + i1*n2;
    V* ovals = output_vals + i1*n2;
    U c_invvar = rsqrt(sigma2 + epsilon);
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
    if (gamma != NULL && (beta != NULL || rms_only)) {
      for (int i = thrx;  i < n2;  i+=numx) {
        U curr = static_cast<U>(lvals[i]);
        if (!rms_only) {
          ovals[i] = gamma[i] * static_cast<V>(c_invvar * (curr - mu)) + beta[i];
        } else {
          ovals[i] = gamma[i] * static_cast<V>(c_invvar * curr);
        }

      }
    } else {
      for (int i = thrx;  i < n2;  i+=numx) {
        U curr = static_cast<U>(lvals[i]);
        if (!rms_only) {
          ovals[i] = static_cast<V>(c_invvar * (curr - mu));
        } else {
          ovals[i] = static_cast<V>(c_invvar * curr);
        }
      }
    }
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      if (!rms_only) {
        mean[i1] = mu;
      }
      invvar[i1] = c_invvar;
    }
    __syncthreads();
  }
}

template<typename T, typename U, typename V=T> __global__
void cuApplyLayerNorm(
  V* __restrict__ output_vals,
  U* __restrict__ mean,
  U* __restrict__ invvar,
  const T* __restrict__ vals,
  const int n1,
  const int n2,
  const U epsilon,
  const V* __restrict__ gamma,
  const V* __restrict__ beta
  )
{
  cuApplyLayerNorm_<T, U, V>(output_vals, mean, invvar, vals, n1, n2, epsilon, gamma, beta, false);
}

template<typename T, typename U, typename V=T> __global__
void cuApplyRMSNorm(
  V* __restrict__ output_vals,
  U* __restrict__ invvar,
  const T* __restrict__ vals,
  const int n1,
  const int n2,
  const U epsilon,
  const V* __restrict__ gamma)
{
  cuApplyLayerNorm_<T, U, V>(output_vals, NULL, invvar, vals, n1, n2, epsilon, gamma, NULL, true);
}


template<typename V> __device__
V clamp_by_magnitude(V curr_gamma, double eps)
{
  const V kMinGamma = V(eps);
  if (curr_gamma >= 0) {
    if (curr_gamma < kMinGamma) {
      return kMinGamma;
    } else {
      return curr_gamma;
    }
  } else {
    if (curr_gamma > -kMinGamma) {
      return -kMinGamma;
    } else {
      return curr_gamma;
    }
  }
}


template<typename T, typename U, typename V, bool MemoryEfficient> __device__
void cuLoadWriteStridedInputs(
    const int i1_block,
    const int thr_load_row_off,
    const int thr_load_col_off,
    const int i2_off,
    const int row_stride,
    U* warp_buf1,
    U* warp_buf2,
    const T* input_or_output,
    const V* dout,
    const int i1_end,
    const int n2,
    const U* __restrict__ mean,
    const U* __restrict__ invvar,
    const V* __restrict__ gamma,
    const V* __restrict__ beta,
    const double eps,
    bool rms_only
    )
{
  int i1 = i1_block+thr_load_row_off;
  if (i1 < i1_end) {
    for (int k = 0;  k < blockDim.y;  ++k) {
      int i2 = i2_off + k;
      int load_idx = i1*n2+i2;
      int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
      if (i2<n2) {
        U c_h = static_cast<U>(input_or_output[load_idx]);
        U curr_dout = static_cast<U>(dout[load_idx]);
        if (!rms_only) {
          warp_buf1[write_idx] = curr_dout;
          if (MemoryEfficient) {
            U curr_beta = static_cast<U>(beta[i2]);
            warp_buf2[write_idx] = curr_dout * (c_h - curr_beta) / static_cast<U>(clamp_by_magnitude(gamma[i2], eps));
          } else {
            warp_buf2[write_idx] = curr_dout * (c_h - mean[i1]) * invvar[i1];
          }
        } else {
          if (MemoryEfficient) {
            warp_buf2[write_idx] = curr_dout * (c_h) / static_cast<U>(clamp_by_magnitude(gamma[i2], eps));
          } else {
            warp_buf2[write_idx] = curr_dout * (c_h) * invvar[i1];
          }
        }
      } else {
        if (!rms_only) {
          warp_buf1[write_idx] = U(0);
        }
        warp_buf2[write_idx] = U(0);
      }
    }
  } else {
    for (int k = 0;  k < blockDim.y;  ++k) {
      int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
      if (!rms_only) {
        warp_buf1[write_idx] = U(0);
      }
      warp_buf2[write_idx] = U(0);
    }
  }
}

template<typename T, typename U, typename V, bool MemoryEfficient> __device__
void cuLoadAddStridedInputs(
    const int i1_block,
    const int thr_load_row_off,
    const int thr_load_col_off,
    const int i2_off,
    const int row_stride,
    U* warp_buf1,
    U* warp_buf2,
    const T* input_or_output,
    const V* dout,
    const int i1_end,
    const int n2,
    const U* __restrict__ mean,
    const U* __restrict__ invvar,
    const V* __restrict__ gamma,
    const V* __restrict__ beta,
    const double eps,
    bool rms_only
    )
{
  int i1 = i1_block+thr_load_row_off;
  if (i1 < i1_end) {
    for (int k = 0;  k < blockDim.y;  ++k) {
      int i2 = i2_off + k;
      int load_idx = i1*n2+i2;
      int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
      if (i2<n2) {
        U c_h = static_cast<U>(input_or_output[load_idx]);
        U curr_dout = static_cast<U>(dout[load_idx]);
        if (!rms_only) {
          U curr_beta = static_cast<U>(beta[i2]);
          warp_buf1[write_idx] += curr_dout;
          if (MemoryEfficient) {
            warp_buf2[write_idx] += curr_dout * (c_h - curr_beta) / static_cast<U>(clamp_by_magnitude(gamma[i2], eps));
          } else {
            warp_buf2[write_idx] += curr_dout * (c_h - mean[i1]) * invvar[i1];
          }
        } else {
          if (MemoryEfficient) {
            warp_buf2[write_idx] += curr_dout * (c_h) / static_cast<U>(clamp_by_magnitude(gamma[i2], eps));
          } else {
            warp_buf2[write_idx] += curr_dout * (c_h) * invvar[i1];
          }
        }
      }
    }
  }
}


template<typename T, typename U, typename V, bool MemoryEfficient> __global__
void cuComputePartGradGammaBeta(
    const V* __restrict__ dout,
    const T* __restrict__ input_or_output,
    const int n1,
    const int n2,
    const U* __restrict__ mean,
    const U* __restrict__ invvar,
    U epsilon,
    const V* __restrict__ gamma,
    const V* __restrict__ beta,
    U* part_grad_gamma,
    U* part_grad_beta,
    const double eps,
    bool rms_only)
{
    const int numsegs_n1 = (n1+blockDim.y*blockDim.y-1) / (blockDim.y*blockDim.y);
    const int segs_per_block = (numsegs_n1 + gridDim.y - 1) / gridDim.y;
    const int i1_beg = blockIdx.y * segs_per_block * blockDim.y*blockDim.y;
    const int i1_beg_plus_one = (blockIdx.y+1) * segs_per_block * blockDim.y*blockDim.y;
    const int i1_end = i1_beg_plus_one < n1 ? i1_beg_plus_one : n1;
    const int row_stride = blockDim.x+1;
    const int thr_load_col_off = (threadIdx.x*blockDim.y)&(blockDim.x-1);
    const int thr_load_row_off = (threadIdx.x*blockDim.y)/blockDim.x + threadIdx.y*blockDim.y;
    const int i2_off = blockIdx.x * blockDim.x + thr_load_col_off;
    SharedMemory<U> shared;
    U* buf = shared.getPointer(); // buf has at least blockDim.x * blockDim.y * blockDim.y + (blockDim.y - 1)*(blockDim.x/blockDim.y) elements
    U* warp_buf1 = (U*)buf;
    U* warp_buf2 = warp_buf1 + blockDim.y * blockDim.y * row_stride;
    // compute partial sums from strided inputs
    // do this to increase number of loads in flight
    cuLoadWriteStridedInputs<T, U, V, MemoryEfficient>(i1_beg,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input_or_output,dout,i1_end,n2,mean,invvar,gamma,beta,eps, rms_only);
    for (int i1_block = i1_beg+blockDim.y*blockDim.y;  i1_block < i1_end;  i1_block+=blockDim.y*blockDim.y) {
      cuLoadAddStridedInputs<T, U, V, MemoryEfficient>(i1_block,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input_or_output,dout,i1_end,n2,mean,invvar,gamma,beta,eps, rms_only);
    }
    __syncthreads();
    // inter-warp reductions
    // sum within each warp
    U acc1 = U(0);
    U acc2 = U(0);
    for (int k = 0;  k < blockDim.y;  ++k) {
      int row1 = threadIdx.y + k*blockDim.y;
      int idx1 = row1*row_stride + threadIdx.x;
      if (!rms_only) {
        acc1 += warp_buf1[idx1];
      }
      acc2 += warp_buf2[idx1];
    }
    if (!rms_only) {
      warp_buf1[threadIdx.y*row_stride+threadIdx.x] = acc1;
    }
    warp_buf2[threadIdx.y*row_stride+threadIdx.x] = acc2;
    __syncthreads();
    // sum all warps
    for (int offset = blockDim.y/2;  offset > 1;  offset /= 2) {
      if (threadIdx.y < offset) {
        int row1 = threadIdx.y;
        int row2 = threadIdx.y + offset;
        int idx1 = row1*row_stride + threadIdx.x;
        int idx2 = row2*row_stride + threadIdx.x;
        if (!rms_only) {
          warp_buf1[idx1] += warp_buf1[idx2];
        }
        warp_buf2[idx1] += warp_buf2[idx2];
      }
      __syncthreads();
    }
    int i2 = blockIdx.x * blockDim.x + threadIdx.x;
    if (threadIdx.y == 0 && i2 < n2) {
      int row1 = threadIdx.y;
      int row2 = threadIdx.y + 1;
      int idx1 = row1*row_stride + threadIdx.x;
      int idx2 = row2*row_stride + threadIdx.x;
      if (!rms_only) {
        part_grad_beta[blockIdx.y*n2+i2] = warp_buf1[idx1] + warp_buf1[idx2];
      }
      part_grad_gamma[blockIdx.y*n2+i2] = warp_buf2[idx1] + warp_buf2[idx2];
    }
}

template<typename U, typename V> __global__
void cuComputeGradGammaBeta(
    const U* part_grad_gamma,
    const U* part_grad_beta,
    const int part_size,
    const int n1,
    const int n2,
    V* grad_gamma,
    V* grad_beta,
    bool rms_only)
{
    // sum partial gradients for gamma and beta
    SharedMemory<U> shared;
    U* buf = shared.getPointer();
    int i2 = blockIdx.x * blockDim.x + threadIdx.x;
    if (i2 < n2) {
      // each warp does sequential reductions until reduced part_size is num_warps
      int num_warp_reductions = part_size / blockDim.y;
      U sum_gamma = U(0);
      U sum_beta = U(0);
      const U* part_grad_gamma_ptr = part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
      const U* part_grad_beta_ptr = part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
      for (int warp_offset = 0;  warp_offset < num_warp_reductions;  ++warp_offset) {
        sum_gamma += part_grad_gamma_ptr[warp_offset*n2];
        if (!rms_only) {
          sum_beta += part_grad_beta_ptr[warp_offset*n2];
        }
      }
      // inter-warp reductions
      const int nbsize3 = blockDim.x * blockDim.y / 2;
      for (int offset = blockDim.y/2;  offset >= 1;  offset /= 2) {
        // top half write to shared memory
        if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
          buf[write_idx] = sum_gamma;
          if (!rms_only) {
            buf[write_idx+nbsize3] = sum_beta;
          }
        }
        __syncthreads();
        // bottom half sums
        if (threadIdx.y < offset) {
          const int read_idx = threadIdx.y * blockDim.x + threadIdx.x;
          sum_gamma += buf[read_idx];
          if (!rms_only) {
            sum_beta += buf[read_idx+nbsize3];
          }
        }
        __syncthreads();
      }
      // write out fully summed gradients
      if (threadIdx.y == 0) {
        grad_gamma[i2] = sum_gamma;
        if (!rms_only) {
          grad_beta[i2] = sum_beta;
        }
      }
    }
}


template<typename T, typename U, typename V, bool MemoryEfficient> __global__
void cuComputeGradInput(
    const V* __restrict__ dout,
    const T* __restrict__ input_or_output,
    const int n1,
    const int n2,
    const U* __restrict__ mean,
    const U* __restrict__ invvar,
    U epsilon,
    const V* gamma,
    const V* beta,
    T* grad_input,
    const double eps,
    bool rms_only)
{
  for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
    U sum_loss1 = U(0);
    U sum_loss2 = U(0);
    const T* k_h = input_or_output + i1*n2;
    const V* k_dout = dout + i1*n2;
    const U c_invvar = invvar[i1];
    const U c_mean = !MemoryEfficient ? mean[i1] : 0.;
    const int numx = blockDim.x * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
    if (gamma != NULL) {
      int l = 4*thrx;
      for (;  l+3 < n2;  l+=4*numx) {
        for (int k = 0;  k < 4;  ++k) {
          const U c_h = static_cast<U>(k_h[l+k]);
          const U c_loss = static_cast<U>(k_dout[l+k]);
          if (!rms_only) {
            sum_loss1 += c_loss * gamma[l+k];
            if (MemoryEfficient) {
              sum_loss2 += c_loss * (c_h - beta[l+k]);
            } else {
              sum_loss2 += c_loss * gamma[l+k] * (c_h - c_mean) * c_invvar;
            }
          } else {
            if (MemoryEfficient) {
              sum_loss2 += c_loss * c_h;
            } else {
              sum_loss2 += c_loss * gamma[l+k] * (c_h) * c_invvar;
            }
          }
        }
      }
      for (;  l < n2;  ++l) {
        const U c_h = static_cast<U>(k_h[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        if (!rms_only) {
          sum_loss1 += c_loss * gamma[l];
          if (MemoryEfficient) {
            sum_loss2 += c_loss * (c_h - beta[l]);
          } else {
            sum_loss2 += c_loss * gamma[l] * (c_h - c_mean) * c_invvar;
          }
        } else {
          if (MemoryEfficient) {
            sum_loss2 += c_loss * c_h;
          } else {
            sum_loss2 += c_loss * gamma[l] * (c_h) * c_invvar;
          }
        }
      }
    } else {
      int l = 4*thrx;
      for (;  l+3 < n2;  l+=4*numx) {
        for (int k = 0;  k < 4;  ++k) {
          const U c_h = static_cast<U>(k_h[l+k]);
          const U c_loss = static_cast<U>(k_dout[l+k]);
          if (!rms_only) {
            sum_loss1 += c_loss;
            if (MemoryEfficient) {
              sum_loss2 += c_loss * c_h;
            } else {
              sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
            }
          } else {
            if (MemoryEfficient) {
              sum_loss2 += c_loss * c_h;
            } else {
              sum_loss2 += c_loss * (c_h) * c_invvar;
            }
          }
        }
      }
      for (;  l < n2;  ++l) {
        const U c_h = static_cast<U>(k_h[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        if (!rms_only) {
          sum_loss1 += c_loss;
          if (MemoryEfficient) {
            sum_loss2 += c_loss * c_h;
          } else {
            sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
          }
        } else {
          if (MemoryEfficient) {
            sum_loss2 += c_loss * c_h;
          } else {
            sum_loss2 += c_loss * (c_h) * c_invvar;
          }
        }
      }
    }
    // intra-warp reductions
    for (int mask = blockDim.x/2;  mask > 0;  mask /= 2) {
      if (!rms_only) {
        sum_loss1 += WARP_SHFL_XOR(sum_loss1, mask);
      }
      sum_loss2 += WARP_SHFL_XOR(sum_loss2, mask);
    }
    // inter-warp reductions
    if (blockDim.y > 1) {
      SharedMemory<U> shared;
      U* buf = shared.getPointer();
      for (int offset = blockDim.y/2;  offset > 0;  offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
          const int wrt_i = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
          if (!rms_only) {
            buf[2*wrt_i] = sum_loss1;
          }
          buf[2*wrt_i+1] = sum_loss2;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.y < offset) {
          const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
          if (!rms_only) {
            sum_loss1 += buf[2*read_i];
          }
          sum_loss2 += buf[2*read_i+1];
        }
        __syncthreads();
      }
      if (threadIdx.y == 0) {
        if (!rms_only) {
          buf[2*threadIdx.x] = sum_loss1;
        }
        buf[2*threadIdx.x+1] = sum_loss2;
      }
      __syncthreads();
      if (threadIdx.y !=0) {
        if (!rms_only) {
          sum_loss1 = buf[2*threadIdx.x];
        }
        sum_loss2 = buf[2*threadIdx.x+1];
      }
    }
    // all threads now have the two sums over l
    U fH = (U)n2;
    U term1 = (U(1) / fH) * c_invvar;
    T* k_grad_input = grad_input + i1*n2;
    if (gamma != NULL) {
      for (int l = thrx;  l < n2;  l+=numx) {
        const U c_h = static_cast<U>(k_h[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        const U k_gamma = static_cast<U>(clamp_by_magnitude(gamma[l], eps));
        U f_grad_input = fH * c_loss * k_gamma;
        if (!rms_only) {
          const U k_beta = beta[l];
          f_grad_input -= sum_loss1;
          if (MemoryEfficient) {
            f_grad_input -= (c_h - k_beta) / k_gamma * sum_loss2;
          } else {
            f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
          }
        } else {
          if (MemoryEfficient) {
            f_grad_input -= c_h / k_gamma * sum_loss2;
          } else {
            f_grad_input -= c_h * c_invvar * sum_loss2;
          }
        }
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    } else {
      for (int l = thrx;  l < n2;  l+=numx) {
        const U c_h = static_cast<U>(k_h[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss;
        if (!rms_only) {
          f_grad_input -= sum_loss1;
          if (MemoryEfficient) {
            f_grad_input -= c_h * sum_loss2;
          } else {
            f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
          }
        } else {
          if (MemoryEfficient) {
            f_grad_input -= c_h * sum_loss2;
          } else {
            f_grad_input -= c_h * c_invvar * sum_loss2;
          }
        }
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    }
    // prevent race where buf is written again before reads are done
    __syncthreads();
  }
}


template<typename T, typename U, typename V=T>
void HostApplyLayerNorm(
    V* output,
    U* mean,
    U* invvar,
    const T* input,
    int n1,
    int n2,
    double epsilon,
    const V* gamma,
    const V* beta
    )
{
    auto stream = at::cuda::getCurrentCUDAStream().stream();
    const dim3 threads(32,4,1);
    const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
    const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1);
    int nshared =
        threads.y > 1 ?
            threads.y*sizeof(U)+(threads.y/2)*sizeof(U) :
            0;
    cuApplyLayerNorm<<<blocks, threads, nshared, stream>>>(
      output, mean, invvar, input, n1, n2, U(epsilon), gamma, beta);
}

template<typename T, typename U, typename V=T>
void HostApplyRMSNorm(
    V* output,
    U* invvar,
    const T* input,
    int n1,
    int n2,
    double epsilon,
    const V* gamma)
{
    auto stream = at::cuda::getCurrentCUDAStream().stream();
    const dim3 threads(32,4,1);
    const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
    const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1);
    int nshared =
        threads.y > 1 ?
            threads.y*sizeof(U)+(threads.y/2)*sizeof(U) :
            0;
    cuApplyRMSNorm<<<blocks, threads, nshared, stream>>>(
      output, invvar, input, n1, n2, U(epsilon), gamma);
}

void cuda_layer_norm(
    at::Tensor* output,
    at::Tensor* mean,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor* gamma,
    at::Tensor* beta,
    double epsilon)
{
    using namespace at;
    DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
        input->scalar_type(), output->scalar_type(), "layer_norm_cuda_kernel",
        using accscalar_t = at::acc_type<scalar_t_in, true>;
        HostApplyLayerNorm<scalar_t_in, accscalar_t, scalar_t_out>(
          output->DATA_PTR<scalar_t_out>(),
              mean->DATA_PTR<accscalar_t>(),
          invvar->DATA_PTR<accscalar_t>(),
          input->DATA_PTR<scalar_t_in>(),
          n1,n2,
          epsilon,
          gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
          beta != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL);
      )
}

void cuda_rms_norm(
    at::Tensor* output,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor* gamma,
    double epsilon)
{
    using namespace at;
    DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
        input->scalar_type(), output->scalar_type(), "rms_norm_cuda_kernel",
        using accscalar_t = at::acc_type<scalar_t_in, true>;
        HostApplyRMSNorm<scalar_t_in, accscalar_t, scalar_t_out>(
          output->DATA_PTR<scalar_t_out>(),
          invvar->DATA_PTR<accscalar_t>(),
          input->DATA_PTR<scalar_t_in>(),
          n1,n2,
          epsilon,
          gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL);
      )
}


template<typename T, typename U=float, typename V=T>
void HostLayerNormGradient(
    const V* dout,
    const U* mean,
    const U* invvar,
    at::Tensor* input_or_output,
    int n1,
    int n2,
    const V* gamma,
    const V* beta,
    double epsilon,
    T* grad_input,
    V* grad_gamma,
    V* grad_beta,
    bool memory_efficient
    )
{
    auto stream = at::cuda::getCurrentCUDAStream().stream();

    if (gamma != NULL && beta != NULL) {
      // compute grad_gamma(j) and grad_beta(j)
      const int part_size = 16;
      const dim3 threads2(32,4,1);
      const dim3 blocks2((n2+threads2.x-1)/threads2.x,part_size,1);
      const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1);
      const int nshared2_b = threads2.x * threads2.y * sizeof(U);
      const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b;
      // note (mkozuki): I can hard code part_grad_gamma's dtype as float given that
      // the `cuda_layer_norm_gradient` doesn't support double.
      const auto part_grad_dtype =
        (input_or_output->scalar_type() == at::ScalarType::Half || input_or_output->scalar_type() == at::ScalarType::BFloat16) ?
        at::ScalarType::Float :
        input_or_output->scalar_type();
      at::Tensor part_grad_gamma = at::empty({part_size,n2}, input_or_output->options().dtype(part_grad_dtype));
      at::Tensor part_grad_beta = at::empty_like(part_grad_gamma);
      BOOL_SWITCH(memory_efficient, MemoryEfficient, [&]{
        auto kernel = &cuComputePartGradGammaBeta<T, U, V, MemoryEfficient>;
        kernel<<<blocks2, threads2, nshared2, stream>>>(
                        dout,
                        input_or_output->DATA_PTR<T>(),
                        n1,n2,
                        mean,
                        invvar,
                        U(epsilon),
                        gamma,
                        beta,
                        part_grad_gamma.DATA_PTR<U>(),
                        part_grad_beta.DATA_PTR<U>(),
                        epsilon,
                        false);
      });

      const dim3 threads3(32,8,1);
      const dim3 blocks3((n2+threads2.x-1)/threads2.x,1,1);
      const int nshared3 = threads3.x * threads3.y * sizeof(U);
      cuComputeGradGammaBeta<<<blocks3, threads3, nshared3, stream>>>(
                      part_grad_gamma.DATA_PTR<U>(),
                      part_grad_beta.DATA_PTR<U>(),
                      part_size,
                      n1,n2,
                      grad_gamma,
                      grad_beta,
                      false);
    }

    // compute grad_input
    const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
    const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1);
    const dim3 threads1(32,4,1);
    int nshared =
            threads1.y > 1 ?
            threads1.y*threads1.x*sizeof(U) :
            0;
    BOOL_SWITCH(memory_efficient, MemoryEfficient, [&] {
      auto kernel = cuComputeGradInput<T, U, V, MemoryEfficient>;
      kernel<<<blocks1, threads1, nshared, stream>>>(
              dout,
              input_or_output->DATA_PTR<T>(),
              n1,n2,
              mean,
              invvar,
              U(epsilon),
              gamma,
              beta,
              grad_input,
              epsilon,
              false);
    });
}

template<typename T, typename U=float, typename V=T>
void HostRMSNormGradient(
    const V* dout,
    const U* invvar,
    at::Tensor* input_or_output,
    int n1,
    int n2,
    const V* gamma,
    double epsilon,
    T* grad_input,
    V* grad_gamma,
    bool memory_efficient)
{
    auto stream = at::cuda::getCurrentCUDAStream().stream();

    if (gamma != NULL) {
      const int part_size = 16;
      const dim3 threads2(32,4,1);
      const dim3 blocks2((n2+threads2.x-1)/threads2.x,part_size,1);
      const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1);
      const int nshared2_b = threads2.x * threads2.y * sizeof(U);
      const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b;
      // note (mkozuki): I can hard code part_grad_gamma's dtype as float given that
      // the `cuda_layer_norm_gradient` doesn't support double.
      const auto part_grad_dtype =
        (input_or_output->scalar_type() == at::ScalarType::Half || input_or_output->scalar_type() == at::ScalarType::BFloat16) ?
        at::ScalarType::Float :
        input_or_output->scalar_type();
      at::Tensor part_grad_gamma = at::empty({part_size,n2}, input_or_output->options().dtype(part_grad_dtype));
      BOOL_SWITCH(memory_efficient, MemoryEfficient, [&]{
        auto kernel = &cuComputePartGradGammaBeta<T, U, V, MemoryEfficient>;
        kernel<<<blocks2, threads2, nshared2, stream>>>(
                        dout,
                        input_or_output->DATA_PTR<T>(),
                        n1,n2,
                        invvar, /* unused */
                        invvar,
                        U(epsilon),
                        gamma,
                        gamma, /* unused */
                        part_grad_gamma.DATA_PTR<U>(),
                        part_grad_gamma.DATA_PTR<U>(), /* unused */
                        epsilon,
                        true);
      });
            

      const dim3 threads3(32,8,1);
      const dim3 blocks3((n2+threads2.x-1)/threads2.x,1,1);
      const int nshared3 = threads3.x * threads3.y * sizeof(U);
      cuComputeGradGammaBeta<<<blocks3, threads3, nshared3, stream>>>(
                      part_grad_gamma.DATA_PTR<U>(),
                      part_grad_gamma.DATA_PTR<U>(), /* unused */
                      part_size,
                      n1,n2,
                      grad_gamma,
                      grad_gamma, /* unused */
                      true);
    }

    // compute grad_input
    const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
    const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1);
    const dim3 threads1(32,4,1);
    int nshared =
            threads1.y > 1 ?
            threads1.y*threads1.x*sizeof(U) :
            0;
    BOOL_SWITCH(memory_efficient, MemoryEfficient, [&] {
      auto kernel = cuComputeGradInput<T, U, V, MemoryEfficient>;
      kernel<<<blocks1, threads1, nshared, stream>>>(
              dout,
              input_or_output->DATA_PTR<T>(),
              n1,n2,
              invvar, /* unused */
              invvar,
              U(epsilon),
              gamma,
              gamma, /* unused */
              grad_input,
              epsilon,
              true);
    });
}

void cuda_layer_norm_gradient(
    at::Tensor* dout,
    at::Tensor* mean,
    at::Tensor* invvar,
    at::Tensor* input_or_output,
    int n1,
    int n2,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor* gamma,
    at::Tensor* beta,
    double epsilon,
    at::Tensor* grad_input,
    at::Tensor* grad_gamma,
    at::Tensor* grad_beta,
    bool memory_efficient)
{
    using namespace at;
    // we can do away with `accscalar_t` as there're only three dtypes: fp32, fp16, bf16
    DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
      input_or_output->scalar_type(), gamma == NULL ? input_or_output->scalar_type() :  gamma->scalar_type(), "cuComputeGradInput",
      using accscalar_t = at::acc_type<scalar_t_in, true>;
      HostLayerNormGradient(
        dout->DATA_PTR<scalar_t_out>(),
        mean != NULL ? mean->DATA_PTR<accscalar_t>() : NULL,
        invvar->DATA_PTR<accscalar_t>(),
        input_or_output,
        n1,n2,
            // TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta
            // if gamma Tensor is NULL on input.
        gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
        gamma != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL,
        epsilon,
        grad_input->DATA_PTR<scalar_t_in>(),
        gamma != NULL ? grad_gamma->DATA_PTR<scalar_t_out>() : NULL,
        gamma != NULL ? grad_beta->DATA_PTR<scalar_t_out>() : NULL,
        memory_efficient);
    )
}

void cuda_rms_norm_gradient(
    at::Tensor* dout,
    at::Tensor* invvar,
    at::Tensor* input_or_output,
    int n1,
    int n2,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor* gamma,
    double epsilon,
    at::Tensor* grad_input,
    at::Tensor* grad_gamma,
    bool memory_efficient)
{
    using namespace at;
    // we can do away with `accscalar_t` as there're only three dtypes: fp32, fp16, bf16
    // DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
    DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
      input_or_output->scalar_type(), gamma == NULL ? input_or_output->scalar_type() :  gamma->scalar_type(), "cuComputeGradInputRMS",
      using accscalar_t = at::acc_type<scalar_t_in, true>;
      HostRMSNormGradient(
        dout->DATA_PTR<scalar_t_out>(),
        invvar->DATA_PTR<accscalar_t>(),
        input_or_output,
        n1,n2,
            // TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta
            // if gamma Tensor is NULL on input.
        gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
        epsilon,
        grad_input->DATA_PTR<scalar_t_in>(),
        gamma != NULL ? grad_gamma->DATA_PTR<scalar_t_out>() : NULL,
        memory_efficient);
    )
}