Spaces:
Runtime error
Runtime error
File size: 40,157 Bytes
8a42f8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 |
#include "ATen/ATen.h"
#include "ATen/AccumulateType.h"
#include "ATen/cuda/CUDAContext.h"
#include "ATen/cuda/DeviceUtils.cuh"
#include <cuda.h>
#include <cuda_runtime.h>
#include "type_shim.h"
#include "static_switch.h"
template<typename U> __device__
void cuWelfordOnlineSum(
const U curr,
U& mu,
U& sigma2,
U& count)
{
count = count + U(1);
U delta = curr - mu;
U lmean = mu + delta / count;
mu = lmean;
U delta2 = curr - lmean;
sigma2 = sigma2 + delta * delta2;
}
template<typename U> __device__
void cuChanOnlineSum(
const U muB,
const U sigma2B,
const U countB,
U& mu,
U& sigma2,
U& count)
{
U delta = muB - mu;
U nA = count;
U nB = countB;
count = count + countB;
U nX = count;
if (nX > U(0)) {
nA = nA / nX;
nB = nB / nX;
mu = nA*mu + nB*muB;
sigma2 = sigma2 + sigma2B + delta * delta * nA * nB * nX;
} else {
mu = U(0);
sigma2 = U(0);
}
}
template<typename U> __device__
void cuRMSOnlineSum(
const U curr,
U& sigma2)
{
sigma2 = sigma2 + curr * curr;
}
template<typename U> __device__
void cuChanRMSOnlineSum(
const U sigma2B,
U& sigma2)
{
sigma2 = sigma2 + sigma2B;
}
template<typename T, typename U> __device__
void cuWelfordMuSigma2(
const T* __restrict__ vals,
const int n1,
const int n2,
const int i1,
U& mu,
U& sigma2,
U* buf,
bool rms_only)
{
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensor is contiguous
// 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
//
// compute variance and mean over n2
U count = U(0);
mu= U(0);
sigma2 = U(0);
if (i1 < n1) {
// one warp normalizes one n1 index,
// synchronization is implicit
// initialize with standard Welford algorithm
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
const T* lvals = vals + i1*n2;
int l = 4*thrx;
for (; l+3 < n2; l+=4*numx) {
for (int k = 0; k < 4; ++k) {
U curr = static_cast<U>(lvals[l+k]);
if (!rms_only) {
cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
} else {
cuRMSOnlineSum<U>(curr, sigma2);
}
}
}
for (; l < n2; ++l) {
U curr = static_cast<U>(lvals[l]);
if (!rms_only) {
cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
} else {
cuRMSOnlineSum<U>(curr, sigma2);
}
}
// intra-warp reductions
for (int l = 0; l <= 4; ++l) {
int srcLaneB = (threadIdx.x+(1<<l))&31;
U sigma2B = WARP_SHFL(sigma2, srcLaneB);
if (!rms_only) {
U muB = WARP_SHFL(mu, srcLaneB);
U countB = WARP_SHFL(count, srcLaneB);
cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
} else {
cuChanRMSOnlineSum<U>(sigma2B, sigma2);
}
}
// threadIdx.x == 0 has correct values for each warp
// inter-warp reductions
if (blockDim.y > 1) {
U* ubuf = (U*)buf;
U* ibuf = (U*)(ubuf + blockDim.y);
for (int offset = blockDim.y/2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
const int wrt_y = threadIdx.y - offset;
if (!rms_only) {
ubuf[2*wrt_y] = mu;
ibuf[wrt_y] = count;
}
ubuf[2*wrt_y+1] = sigma2;
}
__syncthreads();
// lower half merges
if (threadIdx.x == 0 && threadIdx.y < offset) {
U sigma2B = ubuf[2*threadIdx.y+1];
if (!rms_only) {
U muB = ubuf[2*threadIdx.y];
U countB = ibuf[threadIdx.y];
cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
} else {
cuChanRMSOnlineSum<U>(sigma2B,sigma2);
}
}
__syncthreads();
}
// threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
if (threadIdx.x == 0 && threadIdx.y == 0) {
if (!rms_only) {
ubuf[0] = mu;
}
ubuf[1] = sigma2;
}
__syncthreads();
if (!rms_only) {
mu = ubuf[0];
}
sigma2 = ubuf[1]/U(n2);
// don't care about final value of count, we know count == n2
} else {
if (!rms_only) {
mu = WARP_SHFL(mu, 0);
}
sigma2 = WARP_SHFL(sigma2/U(n2), 0);
}
}
}
template<> __device__
void cuWelfordMuSigma2(
const at::Half* __restrict__ vals,
const int n1,
const int n2,
const int i1,
float& mu,
float& sigma2,
float* buf,
bool rms_only)
{
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensor is contiguous
// 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
//
// compute variance and mean over n2
float count = 0.0f;
mu= float(0);
sigma2 = float(0);
if (i1 < n1) {
// one warp normalizes one n1 index,
// synchronization is implicit
// initialize with standard Welford algorithm
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
const at::Half* lvals = vals + i1*n2;
int l = 8*thrx;
if ((((size_t)lvals)&3) != 0) {
// 16 bit alignment
// first thread consumes first point
if (thrx == 0) {
float curr = static_cast<float>(lvals[0]);
if (!rms_only) {
cuWelfordOnlineSum(curr,mu,sigma2,count);
} else {
cuRMSOnlineSum(curr, sigma2);
}
}
++l;
}
// at this point, lvals[l] are 32 bit aligned for all threads.
for (; l+7 < n2; l+=8*numx) {
for (int k = 0; k < 8; k+=2) {
float2 curr = __half22float2(*((__half2*)(lvals+l+k)));
if (!rms_only) {
cuWelfordOnlineSum(curr.x,mu,sigma2,count);
cuWelfordOnlineSum(curr.y,mu,sigma2,count);
} else {
cuRMSOnlineSum(curr.x, sigma2);
cuRMSOnlineSum(curr.y, sigma2);
}
}
}
for (; l < n2; ++l) {
float curr = static_cast<float>(lvals[l]);
if (!rms_only) {
cuWelfordOnlineSum(curr,mu,sigma2,count);
} else {
cuRMSOnlineSum(curr, sigma2);
}
}
// intra-warp reductions
for (int l = 0; l <= 4; ++l) {
int srcLaneB = (threadIdx.x+(1<<l))&31;
float sigma2B = WARP_SHFL(sigma2, srcLaneB);
if (!rms_only) {
float muB = WARP_SHFL(mu, srcLaneB);
float countB = WARP_SHFL(count, srcLaneB);
cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
} else {
cuChanRMSOnlineSum(sigma2B, sigma2);
}
}
// threadIdx.x == 0 has correct values for each warp
// inter-warp reductions
if (blockDim.y > 1) {
float* ubuf = (float*)buf;
float* ibuf = (float*)(ubuf + blockDim.y);
for (int offset = blockDim.y/2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
const int wrt_y = threadIdx.y - offset;
ubuf[2*wrt_y+1] = sigma2;
if (!rms_only) {
ubuf[2*wrt_y] = mu;
ibuf[wrt_y] = count;
}
}
__syncthreads();
// lower half merges
if (threadIdx.x == 0 && threadIdx.y < offset) {
float sigma2B = ubuf[2*threadIdx.y+1];
if (!rms_only) {
float muB = ubuf[2*threadIdx.y];
float countB = ibuf[threadIdx.y];
cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
} else {
cuChanRMSOnlineSum(sigma2B, sigma2);
}
}
__syncthreads();
}
// threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
if (threadIdx.x == 0 && threadIdx.y == 0) {
if (!rms_only) {
ubuf[0] = mu;
}
ubuf[1] = sigma2;
}
__syncthreads();
if (!rms_only) {
mu = ubuf[0];
}
sigma2 = ubuf[1]/float(n2);
// don't care about final value of count, we know count == n2
} else {
if (!rms_only) {
mu = WARP_SHFL(mu, 0);
}
sigma2 = WARP_SHFL(sigma2/float(n2), 0);
}
}
}
template<typename U> U rsqrt(U v) {
return U(1) / sqrt(v);
}
template<> float rsqrt(float v) {
return rsqrtf(v);
}
template<> double rsqrt(double v) {
return rsqrt(v);
}
namespace {
// This is the un-specialized struct. Note that we prevent instantiation of this
// struct by putting an undefined symbol in the function body so it won't compile.
// template <typename T>
// struct SharedMemory
// {
// // Ensure that we won't compile any un-specialized types
// __device__ T *getPointer()
// {
// extern __device__ void error(void);
// error();
// return NULL;
// }
// };
// https://github.com/NVIDIA/apex/issues/246
template <typename T>
struct SharedMemory;
template <>
struct SharedMemory <float>
{
__device__ float *getPointer()
{
extern __shared__ float s_float[];
return s_float;
}
};
template <>
struct SharedMemory <double>
{
__device__ double *getPointer()
{
extern __shared__ double s_double[];
return s_double;
}
};
}
template<typename T, typename U, typename V> __device__
void cuApplyLayerNorm_(
V* __restrict__ output_vals,
U* __restrict__ mean,
U* __restrict__ invvar,
const T* __restrict__ vals,
const int n1,
const int n2,
const U epsilon,
const V* __restrict__ gamma,
const V* __restrict__ beta,
bool rms_only
)
{
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensors are contiguous
//
for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
SharedMemory<U> shared;
U* buf = shared.getPointer();
U mu,sigma2;
cuWelfordMuSigma2(vals,n1,n2,i1,mu,sigma2,buf,rms_only);
const T* lvals = vals + i1*n2;
V* ovals = output_vals + i1*n2;
U c_invvar = rsqrt(sigma2 + epsilon);
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
if (gamma != NULL && (beta != NULL || rms_only)) {
for (int i = thrx; i < n2; i+=numx) {
U curr = static_cast<U>(lvals[i]);
if (!rms_only) {
ovals[i] = gamma[i] * static_cast<V>(c_invvar * (curr - mu)) + beta[i];
} else {
ovals[i] = gamma[i] * static_cast<V>(c_invvar * curr);
}
}
} else {
for (int i = thrx; i < n2; i+=numx) {
U curr = static_cast<U>(lvals[i]);
if (!rms_only) {
ovals[i] = static_cast<V>(c_invvar * (curr - mu));
} else {
ovals[i] = static_cast<V>(c_invvar * curr);
}
}
}
if (threadIdx.x == 0 && threadIdx.y == 0) {
if (!rms_only) {
mean[i1] = mu;
}
invvar[i1] = c_invvar;
}
__syncthreads();
}
}
template<typename T, typename U, typename V=T> __global__
void cuApplyLayerNorm(
V* __restrict__ output_vals,
U* __restrict__ mean,
U* __restrict__ invvar,
const T* __restrict__ vals,
const int n1,
const int n2,
const U epsilon,
const V* __restrict__ gamma,
const V* __restrict__ beta
)
{
cuApplyLayerNorm_<T, U, V>(output_vals, mean, invvar, vals, n1, n2, epsilon, gamma, beta, false);
}
template<typename T, typename U, typename V=T> __global__
void cuApplyRMSNorm(
V* __restrict__ output_vals,
U* __restrict__ invvar,
const T* __restrict__ vals,
const int n1,
const int n2,
const U epsilon,
const V* __restrict__ gamma)
{
cuApplyLayerNorm_<T, U, V>(output_vals, NULL, invvar, vals, n1, n2, epsilon, gamma, NULL, true);
}
template<typename V> __device__
V clamp_by_magnitude(V curr_gamma, double eps)
{
const V kMinGamma = V(eps);
if (curr_gamma >= 0) {
if (curr_gamma < kMinGamma) {
return kMinGamma;
} else {
return curr_gamma;
}
} else {
if (curr_gamma > -kMinGamma) {
return -kMinGamma;
} else {
return curr_gamma;
}
}
}
template<typename T, typename U, typename V, bool MemoryEfficient> __device__
void cuLoadWriteStridedInputs(
const int i1_block,
const int thr_load_row_off,
const int thr_load_col_off,
const int i2_off,
const int row_stride,
U* warp_buf1,
U* warp_buf2,
const T* input_or_output,
const V* dout,
const int i1_end,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar,
const V* __restrict__ gamma,
const V* __restrict__ beta,
const double eps,
bool rms_only
)
{
int i1 = i1_block+thr_load_row_off;
if (i1 < i1_end) {
for (int k = 0; k < blockDim.y; ++k) {
int i2 = i2_off + k;
int load_idx = i1*n2+i2;
int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
if (i2<n2) {
U c_h = static_cast<U>(input_or_output[load_idx]);
U curr_dout = static_cast<U>(dout[load_idx]);
if (!rms_only) {
warp_buf1[write_idx] = curr_dout;
if (MemoryEfficient) {
U curr_beta = static_cast<U>(beta[i2]);
warp_buf2[write_idx] = curr_dout * (c_h - curr_beta) / static_cast<U>(clamp_by_magnitude(gamma[i2], eps));
} else {
warp_buf2[write_idx] = curr_dout * (c_h - mean[i1]) * invvar[i1];
}
} else {
if (MemoryEfficient) {
warp_buf2[write_idx] = curr_dout * (c_h) / static_cast<U>(clamp_by_magnitude(gamma[i2], eps));
} else {
warp_buf2[write_idx] = curr_dout * (c_h) * invvar[i1];
}
}
} else {
if (!rms_only) {
warp_buf1[write_idx] = U(0);
}
warp_buf2[write_idx] = U(0);
}
}
} else {
for (int k = 0; k < blockDim.y; ++k) {
int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
if (!rms_only) {
warp_buf1[write_idx] = U(0);
}
warp_buf2[write_idx] = U(0);
}
}
}
template<typename T, typename U, typename V, bool MemoryEfficient> __device__
void cuLoadAddStridedInputs(
const int i1_block,
const int thr_load_row_off,
const int thr_load_col_off,
const int i2_off,
const int row_stride,
U* warp_buf1,
U* warp_buf2,
const T* input_or_output,
const V* dout,
const int i1_end,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar,
const V* __restrict__ gamma,
const V* __restrict__ beta,
const double eps,
bool rms_only
)
{
int i1 = i1_block+thr_load_row_off;
if (i1 < i1_end) {
for (int k = 0; k < blockDim.y; ++k) {
int i2 = i2_off + k;
int load_idx = i1*n2+i2;
int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
if (i2<n2) {
U c_h = static_cast<U>(input_or_output[load_idx]);
U curr_dout = static_cast<U>(dout[load_idx]);
if (!rms_only) {
U curr_beta = static_cast<U>(beta[i2]);
warp_buf1[write_idx] += curr_dout;
if (MemoryEfficient) {
warp_buf2[write_idx] += curr_dout * (c_h - curr_beta) / static_cast<U>(clamp_by_magnitude(gamma[i2], eps));
} else {
warp_buf2[write_idx] += curr_dout * (c_h - mean[i1]) * invvar[i1];
}
} else {
if (MemoryEfficient) {
warp_buf2[write_idx] += curr_dout * (c_h) / static_cast<U>(clamp_by_magnitude(gamma[i2], eps));
} else {
warp_buf2[write_idx] += curr_dout * (c_h) * invvar[i1];
}
}
}
}
}
}
template<typename T, typename U, typename V, bool MemoryEfficient> __global__
void cuComputePartGradGammaBeta(
const V* __restrict__ dout,
const T* __restrict__ input_or_output,
const int n1,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar,
U epsilon,
const V* __restrict__ gamma,
const V* __restrict__ beta,
U* part_grad_gamma,
U* part_grad_beta,
const double eps,
bool rms_only)
{
const int numsegs_n1 = (n1+blockDim.y*blockDim.y-1) / (blockDim.y*blockDim.y);
const int segs_per_block = (numsegs_n1 + gridDim.y - 1) / gridDim.y;
const int i1_beg = blockIdx.y * segs_per_block * blockDim.y*blockDim.y;
const int i1_beg_plus_one = (blockIdx.y+1) * segs_per_block * blockDim.y*blockDim.y;
const int i1_end = i1_beg_plus_one < n1 ? i1_beg_plus_one : n1;
const int row_stride = blockDim.x+1;
const int thr_load_col_off = (threadIdx.x*blockDim.y)&(blockDim.x-1);
const int thr_load_row_off = (threadIdx.x*blockDim.y)/blockDim.x + threadIdx.y*blockDim.y;
const int i2_off = blockIdx.x * blockDim.x + thr_load_col_off;
SharedMemory<U> shared;
U* buf = shared.getPointer(); // buf has at least blockDim.x * blockDim.y * blockDim.y + (blockDim.y - 1)*(blockDim.x/blockDim.y) elements
U* warp_buf1 = (U*)buf;
U* warp_buf2 = warp_buf1 + blockDim.y * blockDim.y * row_stride;
// compute partial sums from strided inputs
// do this to increase number of loads in flight
cuLoadWriteStridedInputs<T, U, V, MemoryEfficient>(i1_beg,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input_or_output,dout,i1_end,n2,mean,invvar,gamma,beta,eps, rms_only);
for (int i1_block = i1_beg+blockDim.y*blockDim.y; i1_block < i1_end; i1_block+=blockDim.y*blockDim.y) {
cuLoadAddStridedInputs<T, U, V, MemoryEfficient>(i1_block,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input_or_output,dout,i1_end,n2,mean,invvar,gamma,beta,eps, rms_only);
}
__syncthreads();
// inter-warp reductions
// sum within each warp
U acc1 = U(0);
U acc2 = U(0);
for (int k = 0; k < blockDim.y; ++k) {
int row1 = threadIdx.y + k*blockDim.y;
int idx1 = row1*row_stride + threadIdx.x;
if (!rms_only) {
acc1 += warp_buf1[idx1];
}
acc2 += warp_buf2[idx1];
}
if (!rms_only) {
warp_buf1[threadIdx.y*row_stride+threadIdx.x] = acc1;
}
warp_buf2[threadIdx.y*row_stride+threadIdx.x] = acc2;
__syncthreads();
// sum all warps
for (int offset = blockDim.y/2; offset > 1; offset /= 2) {
if (threadIdx.y < offset) {
int row1 = threadIdx.y;
int row2 = threadIdx.y + offset;
int idx1 = row1*row_stride + threadIdx.x;
int idx2 = row2*row_stride + threadIdx.x;
if (!rms_only) {
warp_buf1[idx1] += warp_buf1[idx2];
}
warp_buf2[idx1] += warp_buf2[idx2];
}
__syncthreads();
}
int i2 = blockIdx.x * blockDim.x + threadIdx.x;
if (threadIdx.y == 0 && i2 < n2) {
int row1 = threadIdx.y;
int row2 = threadIdx.y + 1;
int idx1 = row1*row_stride + threadIdx.x;
int idx2 = row2*row_stride + threadIdx.x;
if (!rms_only) {
part_grad_beta[blockIdx.y*n2+i2] = warp_buf1[idx1] + warp_buf1[idx2];
}
part_grad_gamma[blockIdx.y*n2+i2] = warp_buf2[idx1] + warp_buf2[idx2];
}
}
template<typename U, typename V> __global__
void cuComputeGradGammaBeta(
const U* part_grad_gamma,
const U* part_grad_beta,
const int part_size,
const int n1,
const int n2,
V* grad_gamma,
V* grad_beta,
bool rms_only)
{
// sum partial gradients for gamma and beta
SharedMemory<U> shared;
U* buf = shared.getPointer();
int i2 = blockIdx.x * blockDim.x + threadIdx.x;
if (i2 < n2) {
// each warp does sequential reductions until reduced part_size is num_warps
int num_warp_reductions = part_size / blockDim.y;
U sum_gamma = U(0);
U sum_beta = U(0);
const U* part_grad_gamma_ptr = part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
const U* part_grad_beta_ptr = part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
for (int warp_offset = 0; warp_offset < num_warp_reductions; ++warp_offset) {
sum_gamma += part_grad_gamma_ptr[warp_offset*n2];
if (!rms_only) {
sum_beta += part_grad_beta_ptr[warp_offset*n2];
}
}
// inter-warp reductions
const int nbsize3 = blockDim.x * blockDim.y / 2;
for (int offset = blockDim.y/2; offset >= 1; offset /= 2) {
// top half write to shared memory
if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
buf[write_idx] = sum_gamma;
if (!rms_only) {
buf[write_idx+nbsize3] = sum_beta;
}
}
__syncthreads();
// bottom half sums
if (threadIdx.y < offset) {
const int read_idx = threadIdx.y * blockDim.x + threadIdx.x;
sum_gamma += buf[read_idx];
if (!rms_only) {
sum_beta += buf[read_idx+nbsize3];
}
}
__syncthreads();
}
// write out fully summed gradients
if (threadIdx.y == 0) {
grad_gamma[i2] = sum_gamma;
if (!rms_only) {
grad_beta[i2] = sum_beta;
}
}
}
}
template<typename T, typename U, typename V, bool MemoryEfficient> __global__
void cuComputeGradInput(
const V* __restrict__ dout,
const T* __restrict__ input_or_output,
const int n1,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar,
U epsilon,
const V* gamma,
const V* beta,
T* grad_input,
const double eps,
bool rms_only)
{
for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
U sum_loss1 = U(0);
U sum_loss2 = U(0);
const T* k_h = input_or_output + i1*n2;
const V* k_dout = dout + i1*n2;
const U c_invvar = invvar[i1];
const U c_mean = !MemoryEfficient ? mean[i1] : 0.;
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
if (gamma != NULL) {
int l = 4*thrx;
for (; l+3 < n2; l+=4*numx) {
for (int k = 0; k < 4; ++k) {
const U c_h = static_cast<U>(k_h[l+k]);
const U c_loss = static_cast<U>(k_dout[l+k]);
if (!rms_only) {
sum_loss1 += c_loss * gamma[l+k];
if (MemoryEfficient) {
sum_loss2 += c_loss * (c_h - beta[l+k]);
} else {
sum_loss2 += c_loss * gamma[l+k] * (c_h - c_mean) * c_invvar;
}
} else {
if (MemoryEfficient) {
sum_loss2 += c_loss * c_h;
} else {
sum_loss2 += c_loss * gamma[l+k] * (c_h) * c_invvar;
}
}
}
}
for (; l < n2; ++l) {
const U c_h = static_cast<U>(k_h[l]);
const U c_loss = static_cast<U>(k_dout[l]);
if (!rms_only) {
sum_loss1 += c_loss * gamma[l];
if (MemoryEfficient) {
sum_loss2 += c_loss * (c_h - beta[l]);
} else {
sum_loss2 += c_loss * gamma[l] * (c_h - c_mean) * c_invvar;
}
} else {
if (MemoryEfficient) {
sum_loss2 += c_loss * c_h;
} else {
sum_loss2 += c_loss * gamma[l] * (c_h) * c_invvar;
}
}
}
} else {
int l = 4*thrx;
for (; l+3 < n2; l+=4*numx) {
for (int k = 0; k < 4; ++k) {
const U c_h = static_cast<U>(k_h[l+k]);
const U c_loss = static_cast<U>(k_dout[l+k]);
if (!rms_only) {
sum_loss1 += c_loss;
if (MemoryEfficient) {
sum_loss2 += c_loss * c_h;
} else {
sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
}
} else {
if (MemoryEfficient) {
sum_loss2 += c_loss * c_h;
} else {
sum_loss2 += c_loss * (c_h) * c_invvar;
}
}
}
}
for (; l < n2; ++l) {
const U c_h = static_cast<U>(k_h[l]);
const U c_loss = static_cast<U>(k_dout[l]);
if (!rms_only) {
sum_loss1 += c_loss;
if (MemoryEfficient) {
sum_loss2 += c_loss * c_h;
} else {
sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
}
} else {
if (MemoryEfficient) {
sum_loss2 += c_loss * c_h;
} else {
sum_loss2 += c_loss * (c_h) * c_invvar;
}
}
}
}
// intra-warp reductions
for (int mask = blockDim.x/2; mask > 0; mask /= 2) {
if (!rms_only) {
sum_loss1 += WARP_SHFL_XOR(sum_loss1, mask);
}
sum_loss2 += WARP_SHFL_XOR(sum_loss2, mask);
}
// inter-warp reductions
if (blockDim.y > 1) {
SharedMemory<U> shared;
U* buf = shared.getPointer();
for (int offset = blockDim.y/2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
const int wrt_i = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
if (!rms_only) {
buf[2*wrt_i] = sum_loss1;
}
buf[2*wrt_i+1] = sum_loss2;
}
__syncthreads();
// lower half merges
if (threadIdx.y < offset) {
const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
if (!rms_only) {
sum_loss1 += buf[2*read_i];
}
sum_loss2 += buf[2*read_i+1];
}
__syncthreads();
}
if (threadIdx.y == 0) {
if (!rms_only) {
buf[2*threadIdx.x] = sum_loss1;
}
buf[2*threadIdx.x+1] = sum_loss2;
}
__syncthreads();
if (threadIdx.y !=0) {
if (!rms_only) {
sum_loss1 = buf[2*threadIdx.x];
}
sum_loss2 = buf[2*threadIdx.x+1];
}
}
// all threads now have the two sums over l
U fH = (U)n2;
U term1 = (U(1) / fH) * c_invvar;
T* k_grad_input = grad_input + i1*n2;
if (gamma != NULL) {
for (int l = thrx; l < n2; l+=numx) {
const U c_h = static_cast<U>(k_h[l]);
const U c_loss = static_cast<U>(k_dout[l]);
const U k_gamma = static_cast<U>(clamp_by_magnitude(gamma[l], eps));
U f_grad_input = fH * c_loss * k_gamma;
if (!rms_only) {
const U k_beta = beta[l];
f_grad_input -= sum_loss1;
if (MemoryEfficient) {
f_grad_input -= (c_h - k_beta) / k_gamma * sum_loss2;
} else {
f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
}
} else {
if (MemoryEfficient) {
f_grad_input -= c_h / k_gamma * sum_loss2;
} else {
f_grad_input -= c_h * c_invvar * sum_loss2;
}
}
f_grad_input *= term1;
k_grad_input[l] = static_cast<T>(f_grad_input);
}
} else {
for (int l = thrx; l < n2; l+=numx) {
const U c_h = static_cast<U>(k_h[l]);
const U c_loss = static_cast<U>(k_dout[l]);
U f_grad_input = fH * c_loss;
if (!rms_only) {
f_grad_input -= sum_loss1;
if (MemoryEfficient) {
f_grad_input -= c_h * sum_loss2;
} else {
f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
}
} else {
if (MemoryEfficient) {
f_grad_input -= c_h * sum_loss2;
} else {
f_grad_input -= c_h * c_invvar * sum_loss2;
}
}
f_grad_input *= term1;
k_grad_input[l] = static_cast<T>(f_grad_input);
}
}
// prevent race where buf is written again before reads are done
__syncthreads();
}
}
template<typename T, typename U, typename V=T>
void HostApplyLayerNorm(
V* output,
U* mean,
U* invvar,
const T* input,
int n1,
int n2,
double epsilon,
const V* gamma,
const V* beta
)
{
auto stream = at::cuda::getCurrentCUDAStream().stream();
const dim3 threads(32,4,1);
const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1);
int nshared =
threads.y > 1 ?
threads.y*sizeof(U)+(threads.y/2)*sizeof(U) :
0;
cuApplyLayerNorm<<<blocks, threads, nshared, stream>>>(
output, mean, invvar, input, n1, n2, U(epsilon), gamma, beta);
}
template<typename T, typename U, typename V=T>
void HostApplyRMSNorm(
V* output,
U* invvar,
const T* input,
int n1,
int n2,
double epsilon,
const V* gamma)
{
auto stream = at::cuda::getCurrentCUDAStream().stream();
const dim3 threads(32,4,1);
const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1);
int nshared =
threads.y > 1 ?
threads.y*sizeof(U)+(threads.y/2)*sizeof(U) :
0;
cuApplyRMSNorm<<<blocks, threads, nshared, stream>>>(
output, invvar, input, n1, n2, U(epsilon), gamma);
}
void cuda_layer_norm(
at::Tensor* output,
at::Tensor* mean,
at::Tensor* invvar,
at::Tensor* input,
int n1,
int n2,
#ifdef VERSION_GE_1_1
at::IntArrayRef normalized_shape,
#else
at::IntList normalized_shape,
#endif
at::Tensor* gamma,
at::Tensor* beta,
double epsilon)
{
using namespace at;
DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
input->scalar_type(), output->scalar_type(), "layer_norm_cuda_kernel",
using accscalar_t = at::acc_type<scalar_t_in, true>;
HostApplyLayerNorm<scalar_t_in, accscalar_t, scalar_t_out>(
output->DATA_PTR<scalar_t_out>(),
mean->DATA_PTR<accscalar_t>(),
invvar->DATA_PTR<accscalar_t>(),
input->DATA_PTR<scalar_t_in>(),
n1,n2,
epsilon,
gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
beta != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL);
)
}
void cuda_rms_norm(
at::Tensor* output,
at::Tensor* invvar,
at::Tensor* input,
int n1,
int n2,
#ifdef VERSION_GE_1_1
at::IntArrayRef normalized_shape,
#else
at::IntList normalized_shape,
#endif
at::Tensor* gamma,
double epsilon)
{
using namespace at;
DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
input->scalar_type(), output->scalar_type(), "rms_norm_cuda_kernel",
using accscalar_t = at::acc_type<scalar_t_in, true>;
HostApplyRMSNorm<scalar_t_in, accscalar_t, scalar_t_out>(
output->DATA_PTR<scalar_t_out>(),
invvar->DATA_PTR<accscalar_t>(),
input->DATA_PTR<scalar_t_in>(),
n1,n2,
epsilon,
gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL);
)
}
template<typename T, typename U=float, typename V=T>
void HostLayerNormGradient(
const V* dout,
const U* mean,
const U* invvar,
at::Tensor* input_or_output,
int n1,
int n2,
const V* gamma,
const V* beta,
double epsilon,
T* grad_input,
V* grad_gamma,
V* grad_beta,
bool memory_efficient
)
{
auto stream = at::cuda::getCurrentCUDAStream().stream();
if (gamma != NULL && beta != NULL) {
// compute grad_gamma(j) and grad_beta(j)
const int part_size = 16;
const dim3 threads2(32,4,1);
const dim3 blocks2((n2+threads2.x-1)/threads2.x,part_size,1);
const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1);
const int nshared2_b = threads2.x * threads2.y * sizeof(U);
const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b;
// note (mkozuki): I can hard code part_grad_gamma's dtype as float given that
// the `cuda_layer_norm_gradient` doesn't support double.
const auto part_grad_dtype =
(input_or_output->scalar_type() == at::ScalarType::Half || input_or_output->scalar_type() == at::ScalarType::BFloat16) ?
at::ScalarType::Float :
input_or_output->scalar_type();
at::Tensor part_grad_gamma = at::empty({part_size,n2}, input_or_output->options().dtype(part_grad_dtype));
at::Tensor part_grad_beta = at::empty_like(part_grad_gamma);
BOOL_SWITCH(memory_efficient, MemoryEfficient, [&]{
auto kernel = &cuComputePartGradGammaBeta<T, U, V, MemoryEfficient>;
kernel<<<blocks2, threads2, nshared2, stream>>>(
dout,
input_or_output->DATA_PTR<T>(),
n1,n2,
mean,
invvar,
U(epsilon),
gamma,
beta,
part_grad_gamma.DATA_PTR<U>(),
part_grad_beta.DATA_PTR<U>(),
epsilon,
false);
});
const dim3 threads3(32,8,1);
const dim3 blocks3((n2+threads2.x-1)/threads2.x,1,1);
const int nshared3 = threads3.x * threads3.y * sizeof(U);
cuComputeGradGammaBeta<<<blocks3, threads3, nshared3, stream>>>(
part_grad_gamma.DATA_PTR<U>(),
part_grad_beta.DATA_PTR<U>(),
part_size,
n1,n2,
grad_gamma,
grad_beta,
false);
}
// compute grad_input
const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1);
const dim3 threads1(32,4,1);
int nshared =
threads1.y > 1 ?
threads1.y*threads1.x*sizeof(U) :
0;
BOOL_SWITCH(memory_efficient, MemoryEfficient, [&] {
auto kernel = cuComputeGradInput<T, U, V, MemoryEfficient>;
kernel<<<blocks1, threads1, nshared, stream>>>(
dout,
input_or_output->DATA_PTR<T>(),
n1,n2,
mean,
invvar,
U(epsilon),
gamma,
beta,
grad_input,
epsilon,
false);
});
}
template<typename T, typename U=float, typename V=T>
void HostRMSNormGradient(
const V* dout,
const U* invvar,
at::Tensor* input_or_output,
int n1,
int n2,
const V* gamma,
double epsilon,
T* grad_input,
V* grad_gamma,
bool memory_efficient)
{
auto stream = at::cuda::getCurrentCUDAStream().stream();
if (gamma != NULL) {
const int part_size = 16;
const dim3 threads2(32,4,1);
const dim3 blocks2((n2+threads2.x-1)/threads2.x,part_size,1);
const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1);
const int nshared2_b = threads2.x * threads2.y * sizeof(U);
const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b;
// note (mkozuki): I can hard code part_grad_gamma's dtype as float given that
// the `cuda_layer_norm_gradient` doesn't support double.
const auto part_grad_dtype =
(input_or_output->scalar_type() == at::ScalarType::Half || input_or_output->scalar_type() == at::ScalarType::BFloat16) ?
at::ScalarType::Float :
input_or_output->scalar_type();
at::Tensor part_grad_gamma = at::empty({part_size,n2}, input_or_output->options().dtype(part_grad_dtype));
BOOL_SWITCH(memory_efficient, MemoryEfficient, [&]{
auto kernel = &cuComputePartGradGammaBeta<T, U, V, MemoryEfficient>;
kernel<<<blocks2, threads2, nshared2, stream>>>(
dout,
input_or_output->DATA_PTR<T>(),
n1,n2,
invvar, /* unused */
invvar,
U(epsilon),
gamma,
gamma, /* unused */
part_grad_gamma.DATA_PTR<U>(),
part_grad_gamma.DATA_PTR<U>(), /* unused */
epsilon,
true);
});
const dim3 threads3(32,8,1);
const dim3 blocks3((n2+threads2.x-1)/threads2.x,1,1);
const int nshared3 = threads3.x * threads3.y * sizeof(U);
cuComputeGradGammaBeta<<<blocks3, threads3, nshared3, stream>>>(
part_grad_gamma.DATA_PTR<U>(),
part_grad_gamma.DATA_PTR<U>(), /* unused */
part_size,
n1,n2,
grad_gamma,
grad_gamma, /* unused */
true);
}
// compute grad_input
const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1);
const dim3 threads1(32,4,1);
int nshared =
threads1.y > 1 ?
threads1.y*threads1.x*sizeof(U) :
0;
BOOL_SWITCH(memory_efficient, MemoryEfficient, [&] {
auto kernel = cuComputeGradInput<T, U, V, MemoryEfficient>;
kernel<<<blocks1, threads1, nshared, stream>>>(
dout,
input_or_output->DATA_PTR<T>(),
n1,n2,
invvar, /* unused */
invvar,
U(epsilon),
gamma,
gamma, /* unused */
grad_input,
epsilon,
true);
});
}
void cuda_layer_norm_gradient(
at::Tensor* dout,
at::Tensor* mean,
at::Tensor* invvar,
at::Tensor* input_or_output,
int n1,
int n2,
#ifdef VERSION_GE_1_1
at::IntArrayRef normalized_shape,
#else
at::IntList normalized_shape,
#endif
at::Tensor* gamma,
at::Tensor* beta,
double epsilon,
at::Tensor* grad_input,
at::Tensor* grad_gamma,
at::Tensor* grad_beta,
bool memory_efficient)
{
using namespace at;
// we can do away with `accscalar_t` as there're only three dtypes: fp32, fp16, bf16
DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
input_or_output->scalar_type(), gamma == NULL ? input_or_output->scalar_type() : gamma->scalar_type(), "cuComputeGradInput",
using accscalar_t = at::acc_type<scalar_t_in, true>;
HostLayerNormGradient(
dout->DATA_PTR<scalar_t_out>(),
mean != NULL ? mean->DATA_PTR<accscalar_t>() : NULL,
invvar->DATA_PTR<accscalar_t>(),
input_or_output,
n1,n2,
// TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta
// if gamma Tensor is NULL on input.
gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
gamma != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL,
epsilon,
grad_input->DATA_PTR<scalar_t_in>(),
gamma != NULL ? grad_gamma->DATA_PTR<scalar_t_out>() : NULL,
gamma != NULL ? grad_beta->DATA_PTR<scalar_t_out>() : NULL,
memory_efficient);
)
}
void cuda_rms_norm_gradient(
at::Tensor* dout,
at::Tensor* invvar,
at::Tensor* input_or_output,
int n1,
int n2,
#ifdef VERSION_GE_1_1
at::IntArrayRef normalized_shape,
#else
at::IntList normalized_shape,
#endif
at::Tensor* gamma,
double epsilon,
at::Tensor* grad_input,
at::Tensor* grad_gamma,
bool memory_efficient)
{
using namespace at;
// we can do away with `accscalar_t` as there're only three dtypes: fp32, fp16, bf16
// DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
input_or_output->scalar_type(), gamma == NULL ? input_or_output->scalar_type() : gamma->scalar_type(), "cuComputeGradInputRMS",
using accscalar_t = at::acc_type<scalar_t_in, true>;
HostRMSNormGradient(
dout->DATA_PTR<scalar_t_out>(),
invvar->DATA_PTR<accscalar_t>(),
input_or_output,
n1,n2,
// TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta
// if gamma Tensor is NULL on input.
gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
epsilon,
grad_input->DATA_PTR<scalar_t_in>(),
gamma != NULL ? grad_gamma->DATA_PTR<scalar_t_out>() : NULL,
memory_efficient);
)
}
|