Spaces:
Runtime error
Runtime error
File size: 52,507 Bytes
8a42f8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 |
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <torch/torch.h>
/* Includes, cuda */
#include <cublas_v2.h>
#include <cuda_runtime.h>
#if defined(CUBLAS_VERSION) && CUBLAS_VERSION >= 11000
// includes cublaslt
#include <cublasLt.h>
#endif
// constants for fused bias+relu kernel
#define BIAS_RELU_FW_NTHREADS 128 // forward number of thread per block
#define BIAS_RELU_BW_NTHREADS_X 32 // backward number of thread in feature dim
#define BIAS_RELU_BW_NTHREADS_Y 16 // backward number of thread in batch dim
#define BIAS_RELU_RED_PER_THREAD 16 // backward minimal reduction length per thread
// move to a header later on
#define ILP 4
template<typename T>
__host__ __device__ __forceinline__ bool is_aligned(T* p){
return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
}
template<typename T>
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}
template<typename T>
__device__ __forceinline__ void load_store(T* dst, volatile T* src, int dst_offset, int src_offset){
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}
template<typename T>
__device__ __forceinline__ void load_store(volatile T* dst, T* src, int dst_offset, int src_offset){
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}
// Keep ReLU in float only. When using half, cast to float before calling.
__device__ __inline__ float relu(float a) {
float retf = max(a, 0.f);
return (retf);
}
// Keep Sigmoid in float only. When using half, cast to float before calling.
__device__ __inline__ float sigmoid(float a) {
float retf = 1.f / (1.f + expf(-a));
return (retf);
}
// FP64 Wrapper around cublas GEMMEx
cublasStatus_t mlp_gemm(
cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
float* alpha,
const double* A,
int lda,
const double* B,
int ldb,
const float* beta,
double* C,
int ldc) {
return cublasGemmEx(
handle,
transa,
transb,
m,
n,
k,
alpha,
A,
CUDA_R_64F,
lda,
B,
CUDA_R_64F,
ldb,
beta,
C,
CUDA_R_64F,
ldc,
CUDA_R_64F,
CUBLAS_GEMM_DEFAULT);
}
// FP32 Wrapper around cublas GEMMEx
cublasStatus_t mlp_gemm(
cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
float* alpha,
const float* A,
int lda,
const float* B,
int ldb,
const float* beta,
float* C,
int ldc) {
return cublasGemmEx(
handle,
transa,
transb,
m,
n,
k,
alpha,
A,
CUDA_R_32F,
lda,
B,
CUDA_R_32F,
ldb,
beta,
C,
CUDA_R_32F,
ldc,
CUDA_R_32F,
CUBLAS_GEMM_DEFAULT);
}
// FP16 Tensor core wrapper around cublas GEMMEx
cublasStatus_t mlp_gemm(
cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
float* alpha,
const at::Half* A,
int lda,
const at::Half* B,
int ldb,
float* beta,
at::Half* C,
int ldc) {
return cublasGemmEx(
handle,
transa,
transb,
m,
n,
k,
alpha,
A,
CUDA_R_16F,
lda,
B,
CUDA_R_16F,
ldb,
beta,
C,
CUDA_R_16F,
ldc,
CUDA_R_32F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP);
}
#if defined(CUBLAS_VERSION) && CUBLAS_VERSION >= 11000
int mlp_gemm_lt(
cublasLtHandle_t ltHandle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
float *alpha, /* host pointer */
const at::Half* A,
int lda,
const at::Half* B,
int ldb,
float *beta, /* host pointer */
at::Half* C,
int ldc,
void *workspace,
size_t workspaceSize,
cudaStream_t stream,
bool use_bias,
bool use_relu,
const void* bias) {
cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
cublasLtMatmulDescOpaque_t operationDesc = {};
cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
cublasLtMatmulPreferenceOpaque_t preference = {};
int returnedResults = 0;
cublasLtMatmulHeuristicResult_t heuristicResult = {};
cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_DEFAULT;
// Create operation descriptor; see cublasLtMatmulDescAttributes_t
// for details about defaults; here we just set the transforms for
// A and B.
status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
if (use_bias) {
status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias, sizeof(bias));
if (status != CUBLAS_STATUS_SUCCESS) {
goto CLEANUP;
}
if (use_relu) {
epilogue = CUBLASLT_EPILOGUE_RELU_BIAS;
} else {
epilogue = CUBLASLT_EPILOGUE_BIAS;
}
} else {
if (use_relu) {
epilogue = CUBLASLT_EPILOGUE_RELU;
}
}
status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
if (status != CUBLAS_STATUS_SUCCESS) {
goto CLEANUP;
}
// Create matrix descriptors. Not setting any extra attributes.
status = cublasLtMatrixLayoutInit(
&Adesc, CUDA_R_16F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
status = cublasLtMatrixLayoutInit(
&Bdesc, CUDA_R_16F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_16F, m, n, ldc);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
// Create preference handle; In general, extra attributes can be
// used here to disable tensor ops or to make sure algo selected
// will work with badly aligned A, B, C. However, for simplicity
// here we assume A,B,C are always well aligned (e.g., directly
// come from cudaMalloc)
status = cublasLtMatmulPreferenceInit(&preference);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
status = cublasLtMatmulPreferenceSetAttribute(
&preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
// We just need the best available heuristic to try and run matmul.
// There is no guarantee that this will work. For example, if A is
// badly aligned, you can request more (e.g. 32) algos and try to
// run them one by one until something works.
status = cublasLtMatmulAlgoGetHeuristic(
ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
if (returnedResults == 0) {
status = CUBLAS_STATUS_NOT_SUPPORTED;
goto CLEANUP;
}
status = cublasLtMatmul(ltHandle,
&operationDesc,
alpha,
A,
&Adesc,
B,
&Bdesc,
beta,
C,
&Cdesc,
C,
&Cdesc,
&heuristicResult.algo,
workspace,
workspaceSize,
stream);
CLEANUP:
// Descriptors are no longer needed as all GPU work was already
// enqueued.
return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
}
int mlp_gemm_lt(
cublasLtHandle_t ltHandle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
float *alpha, /* host pointer */
const double* A,
int lda,
const double* B,
int ldb,
float *beta, /* host pointer */
double* C,
int ldc,
void *workspace,
size_t workspaceSize,
cudaStream_t stream,
bool use_bias,
bool use_relu,
const void* bias) {
return 1;
}
int mlp_gemm_lt(
cublasLtHandle_t ltHandle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
float *alpha, /* host pointer */
const float *A,
int lda,
const float *B,
int ldb,
float *beta, /* host pointer */
float *C,
int ldc,
void *workspace,
size_t workspaceSize,
cudaStream_t stream,
bool use_bias,
bool use_relu,
const void* bias) {
cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
cublasLtMatmulDescOpaque_t operationDesc = {};
cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
cublasLtMatmulPreferenceOpaque_t preference = {};
int returnedResults = 0;
cublasLtMatmulHeuristicResult_t heuristicResult = {};
cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_DEFAULT;
// Create operation descriptor; see cublasLtMatmulDescAttributes_t
// for details about defaults; here we just set the transforms for
// A and B.
status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
if (use_bias) {
status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias, sizeof(bias));
if (status != CUBLAS_STATUS_SUCCESS) {
goto CLEANUP;
}
if (use_relu) {
epilogue = CUBLASLT_EPILOGUE_RELU_BIAS;
} else {
epilogue = CUBLASLT_EPILOGUE_BIAS;
}
} else {
if (use_relu) {
epilogue = CUBLASLT_EPILOGUE_RELU;
}
}
status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
if (status != CUBLAS_STATUS_SUCCESS) {
goto CLEANUP;
}
// Create matrix descriptors. Not setting any extra attributes.
status = cublasLtMatrixLayoutInit(
&Adesc, CUDA_R_32F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
status = cublasLtMatrixLayoutInit(
&Bdesc, CUDA_R_32F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_32F, m, n, ldc);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
// Create preference handle; In general, extra attributes can be
// used here to disable tensor ops or to make sure algo selected
// will work with badly aligned A, B, C. However, for simplicity
// here we assume A,B,C are always well aligned (e.g., directly
// come from cudaMalloc)
status = cublasLtMatmulPreferenceInit(&preference);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
status = cublasLtMatmulPreferenceSetAttribute(
&preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
// We just need the best available heuristic to try and run matmul.
// There is no guarantee that this will work. For example, if A is
// badly aligned, you can request more (e.g. 32) algos and try to
// run them one by one until something works.
status = cublasLtMatmulAlgoGetHeuristic(
ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
if (returnedResults == 0) {
status = CUBLAS_STATUS_NOT_SUPPORTED;
goto CLEANUP;
}
status = cublasLtMatmul(ltHandle,
&operationDesc,
alpha,
A,
&Adesc,
B,
&Bdesc,
beta,
C,
&Cdesc,
C,
&Cdesc,
&heuristicResult.algo,
workspace,
workspaceSize,
stream);
CLEANUP:
// Descriptors are no longer needed as all GPU work was already
// enqueued.
return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
}
#endif
// Bias ADD. Assume input X is [features x batch size], column major.
// Bias is one 'features' long vector, with implicit broadcast.
template <typename T>
__global__ void biasAdd_fprop(T *X, T *b, uint batch_size, uint features) {
T r_x[ILP];
T r_b[ILP];
if(is_aligned(X) && is_aligned(b) && features % ILP ==0) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid*ILP < features * batch_size; tid += blockDim.x * gridDim.x) {
int row = tid % (features / ILP);
load_store(r_x, X, 0 , tid);
load_store(r_b, b, 0 , row);
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
float bias_sum = static_cast<float>(r_x[ii]) + static_cast<float>(r_b[ii]);
r_x[ii] = bias_sum;
}
load_store(X, r_x, tid , 0);
}
} else {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid < features * batch_size; tid += ILP * blockDim.x * gridDim.x) {
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
int row = tid % features;
r_x[ii] = X[idx];
r_b[ii] = b[row];
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
float bias_sum = static_cast<float>(r_x[ii]) + static_cast<float>(r_b[ii]);
r_x[ii] = bias_sum;
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
X[idx] = r_x[ii];
}
}
}
}
}
// Bias ADD + ReLU. Assume input X is [features x batch size], column major.
// Activation support fuesed ReLU. Safe to call in-place.
template <typename T>
__global__ void biasAddRelu_fprop(T *X, T *b, uint batch_size, uint features) {
T r_x[ILP];
T r_b[ILP];
if(is_aligned(X) && is_aligned(b) && features % ILP ==0) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid*ILP < features * batch_size; tid += blockDim.x * gridDim.x) {
int row = tid % (features / ILP);
load_store(r_x, X, 0 , tid);
load_store(r_b, b, 0 , row);
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
float bias_sum = static_cast<float>(r_x[ii]) + static_cast<float>(r_b[ii]);
r_x[ii] = relu(bias_sum);
}
load_store(X, r_x, tid , 0);
}
} else {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid < features * batch_size; tid += ILP * blockDim.x * gridDim.x) {
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
int row = tid % features;
r_x[ii] = X[idx];
r_b[ii] = b[row];
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
float bias_sum = static_cast<float>(r_x[ii]) + static_cast<float>(r_b[ii]);
r_x[ii] = relu(bias_sum);
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
X[idx] = r_x[ii];
}
}
}
}
}
// ReLU. Assume input X is [features x batch size], column major.
// Safe to call in-place.
template <typename T>
__global__ void Relu_fprop(T *X, uint batch_size, uint features) {
T r_x[ILP];
if(is_aligned(X) && features % ILP ==0) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid*ILP < features * batch_size; tid += blockDim.x * gridDim.x) {
load_store(r_x, X, 0 , tid);
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
r_x[ii] = relu(static_cast<float>(r_x[ii]));
}
load_store(X, r_x, tid , 0);
}
} else {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid < features * batch_size; tid += ILP * blockDim.x * gridDim.x) {
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
r_x[ii] = X[idx];
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
r_x[ii] = relu(static_cast<float>(r_x[ii]));
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
X[idx] = r_x[ii];
}
}
}
}
}
// Sigmoid. Assume input X is [features x batch size], column major.
// Safe to call in-place.
template <typename T>
__global__ void Sigmoid_fprop(T *X, uint batch_size, uint features) {
T r_x[ILP];
if(is_aligned(X) && features % ILP ==0) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid*ILP < features * batch_size; tid += blockDim.x * gridDim.x) {
load_store(r_x, X, 0 , tid);
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
r_x[ii] = sigmoid(static_cast<float>(r_x[ii]));
}
load_store(X, r_x, tid , 0);
}
} else {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid < features * batch_size; tid += ILP * blockDim.x * gridDim.x) {
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
r_x[ii] = X[idx];
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
r_x[ii] = sigmoid(static_cast<float>(r_x[ii]));
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
X[idx] = r_x[ii];
}
}
}
}
}
// ReLU. Assume input X is [features x batch size], column major.
// Safe to call in-place.
template <typename T>
__global__ void Relu_bprop(T *dY, T *Y, uint batch_size, uint features, T *dX) {
T r_dy[ILP];
T r_y[ILP];
if(is_aligned(dY) &&
is_aligned(Y) &&
is_aligned(dX) &&
features % ILP ==0) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid*ILP < features * batch_size; tid += blockDim.x * gridDim.x) {
load_store(r_dy, dY, 0 , tid);
load_store(r_y, Y, 0 , tid);
#pragma unroll
for(int ii=0;ii<ILP;ii++){
if ((float)r_y[ii] <= 0.f)
r_dy[ii] = 0;
}
load_store(dX, r_dy, tid, 0);
}
} else {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid < features * batch_size; tid += ILP * blockDim.x * gridDim.x) {
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
r_dy[ii] = dY[idx];
r_y[ii] = Y[idx];
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
if ((float)r_y[ii] <= 0.f)
r_dy[ii] = 0;
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
dX[idx] = r_dy[ii];
}
}
}
}
}
// Sigmoid. Assume input X is [features x batch size], column major.
// Safe to call in-place.
template <typename T>
__global__ void Sigmoid_bprop(T *dY, T *Y, uint batch_size, uint features, T *dX) {
T r_dy[ILP];
T r_y[ILP];
if(is_aligned(dY) &&
is_aligned(Y) &&
is_aligned(dX) &&
features % ILP ==0) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid*ILP < features * batch_size; tid += blockDim.x * gridDim.x) {
load_store(r_dy, dY, 0 , tid);
load_store(r_y, Y, 0 , tid);
#pragma unroll
for(int ii=0;ii<ILP;ii++){
float grad_out = r_dy[ii];
float out = r_y[ii];
float grad_i = out * ( 1.f - out) * grad_out;
r_dy[ii] = grad_i;
}
load_store(dX, r_dy, tid, 0);
}
} else {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid < features * batch_size; tid += ILP * blockDim.x * gridDim.x) {
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
r_dy[ii] = dY[idx];
r_y[ii] = Y[idx];
}
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
float grad_out = r_dy[ii];
float out = r_y[ii];
float grad_i = out * ( 1.f - out) * grad_out;
r_dy[ii] = grad_i;
}
#pragma unroll
for(int ii = 0; ii < ILP; ii++) {
int idx = tid + ii * blockDim.x * gridDim.x;
if(idx < features * batch_size) {
dX[idx] = r_dy[ii];
}
}
}
}
}
// Compute grid size for pointwise backward kernel.
// block_x/y is total elment being handled per block, not number of threads
void get_biasAddRelu_bprop_grid_size(
int yfeat,
int batch_size,
int block_x,
int block_y,
int* grid_x,
int* grid_y) {
*grid_x = (yfeat + block_x - 1) / block_x;
// Get number of SMs for efficient reduction.
int num_SMs = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;
// can switch to occupancy calculation. use 4 below now for sm_70
int max_blocks_y = (num_SMs * 4+(*grid_x)-1) / (*grid_x);
// block_y should be from minimal work per thread
int nRedSplits = (batch_size + block_y - 1) / block_y;
// increase number of elem per thread redcution to not launch more than enough
// kernel adjust work, so here we just launch max block
*grid_y = std::min(nRedSplits, max_blocks_y);
return;
}
// Addition done deterministically via a 2-pass approach. Each CTA writes out partial
// sum, and the last CTA in grid Y dimension accumulates partials serially and writes to result.
template <typename T, int UNROLL_FACTOR>
__global__ void biasAdd_bprop(
T* dY,
int features,
int batch_size,
volatile float* intermediate,
int* semaphores,
T* db) {
// The feature that this thread is responsible for
int f = blockIdx.x * blockDim.x + threadIdx.x;
// Compute the span this thread is responsible for
// For this block
int b_chunkSize = (batch_size + gridDim.y - 1) / gridDim.y;
int b_nStart = blockIdx.y * b_chunkSize;
int b_nSpan = min(batch_size, b_nStart + b_chunkSize) - b_nStart;
// For this thread
int chunkSize = (b_chunkSize + blockDim.y - 1) / blockDim.y;
int nStart = threadIdx.y * chunkSize + b_nStart;
int nSpan = min(b_nStart + b_nSpan, nStart + chunkSize) - nStart;
volatile float* out = intermediate + blockIdx.y * features;
// Flag to trigger last reduction.
__shared__ bool isLastBlock;
// we know block size for now
__shared__ float smem[BIAS_RELU_BW_NTHREADS_X*BIAS_RELU_BW_NTHREADS_Y];
// Accumulate db in FP32 always
float db_local = 0;
if (f < features) {
int nidx = 0;
// Handle non-multiple of UNROLL_FACTOR residue
for (; nidx < nSpan % UNROLL_FACTOR; nidx++) {
int64_t row, col, flat_idx;
row = f;
col = nStart + nidx;
flat_idx = col * features + row;
db_local += (float)dY[flat_idx];
}
// Handle meat of work
for (; (nidx + UNROLL_FACTOR - 1) < nSpan; nidx += UNROLL_FACTOR) {
int64_t row, col, flat_idx;
row = f;
col = nStart + nidx;
flat_idx = col * features + row;
#pragma unroll 4
for (int u = 0; u < UNROLL_FACTOR; u++) {
db_local += (float)dY[flat_idx];
flat_idx += features;
}
}
// naive block reduction on y-dim
int linear_idx = threadIdx.y * blockDim.x + threadIdx.x;
smem[linear_idx] = db_local;
}
__syncthreads();
if (f < features) {
if(threadIdx.y == 0) {
for(int yidx = 1; yidx < blockDim.y; yidx++){
db_local += smem[yidx * blockDim.x + threadIdx.x];
}
// block result is in db_local now for all threadIdx.y == 0
// Write out partial result
out[f] = db_local;
}
}
__threadfence();
__syncthreads();
// Increment semaphore and check if this is the last CTA in the grid_y dimension.
// Only thread (0,0) calls this
if (threadIdx.x == 0 && threadIdx.y == 0 && f < features) {
unsigned int sum_idx;
sum_idx = atomicAdd(&(semaphores[blockIdx.x]), 1);
isLastBlock = (sum_idx == (gridDim.y - 1));
}
__syncthreads();
db_local = 0;
// No block reduction for now, only thread (*,0) do grid reduction
if (isLastBlock && f < features) {
if(threadIdx.y == 0) {
for (int n = 0; n < gridDim.y; n++) {
int row, col;
row = f;
col = n;
db_local += (float)(intermediate[col * features + row]);
}
db[f] = (T)db_local;
}
}
}
// Addition done deterministically via a 2-pass approach. Each CTA writes out partial
// sum, and the last CTA in grid Y dimension accumulates partials serially and writes to result.
template <typename T, int UNROLL_FACTOR>
__global__ void biasAddRelu_bprop(
T* Y,
T* dY,
int features,
int batch_size,
T* dX,
volatile float* intermediate,
int* semaphores,
T* db) {
// The feature that this thread is responsible for
int f = blockIdx.x * blockDim.x + threadIdx.x;
// Compute the span this thread is responsible for
// For this block
int b_chunkSize = (batch_size + gridDim.y - 1) / gridDim.y;
int b_nStart = blockIdx.y * b_chunkSize;
int b_nSpan = min(batch_size, b_nStart + b_chunkSize) - b_nStart;
// For this thread
int chunkSize = (b_chunkSize + blockDim.y - 1) / blockDim.y;
int nStart = threadIdx.y * chunkSize + b_nStart;
int nSpan = min(b_nStart + b_nSpan, nStart + chunkSize) - nStart;
volatile float* out = intermediate + blockIdx.y * features;
// Flag to trigger last reduction.
__shared__ bool isLastBlock;
// we know block size for now
__shared__ float smem[BIAS_RELU_BW_NTHREADS_X*BIAS_RELU_BW_NTHREADS_Y];
// Accumulate db in FP32 always
float db_local = 0;
if (f < features) {
int nidx = 0;
// Handle non-multiple of UNROLL_FACTOR residue
for (; nidx < nSpan % UNROLL_FACTOR; nidx++) {
int row, col, flat_idx;
row = f;
col = nStart + nidx;
flat_idx = col * features + row;
T y_val = Y[flat_idx];
T dy_val = dY[flat_idx];
T dx_val;
if ((float)y_val > 0.f)
dx_val = dy_val;
else
dx_val = 0;
dX[flat_idx] = dx_val;
db_local += (float)dx_val;
}
// Handle meat of work
for (; (nidx + UNROLL_FACTOR - 1) < nSpan; nidx += UNROLL_FACTOR) {
int row, col, flat_idx;
row = f;
col = nStart + nidx;
flat_idx = col * features + row;
#pragma unroll 4
for (int u = 0; u < UNROLL_FACTOR; u++) {
T y_val = Y[flat_idx];
T dy_val = dY[flat_idx];
T dx_val;
if ((float)y_val > 0.f)
dx_val = dy_val;
else
dx_val = 0;
dX[flat_idx] = dx_val;
db_local += (float)dx_val;
flat_idx += features;
}
}
// naive block reduction on y-dim
int linear_idx = threadIdx.y * blockDim.x + threadIdx.x;
smem[linear_idx] = db_local;
}
__syncthreads();
if (f < features) {
if(threadIdx.y == 0) {
for(int yidx = 1; yidx < blockDim.y; yidx++){
db_local += smem[yidx * blockDim.x + threadIdx.x];
}
// block result is in db_local now for all threadIdx.y == 0
// Write out partial result
out[f] = db_local;
}
}
__threadfence();
__syncthreads();
// Increment semaphore and check if this is the last CTA in the grid_y dimension.
// Only thread (0,0) calls this
if (threadIdx.x == 0 && threadIdx.y == 0 && f < features) {
unsigned int sum_idx;
sum_idx = atomicAdd(&(semaphores[blockIdx.x]), 1);
isLastBlock = (sum_idx == (gridDim.y - 1));
}
__syncthreads();
db_local = 0;
// No block reduction for now, only thread (*,0) do grid reduction
if (isLastBlock && f < features) {
if(threadIdx.y == 0) {
for (int n = 0; n < gridDim.y; n++) {
int row, col;
row = f;
col = n;
db_local += (float)(intermediate[col * features + row]);
}
db[f] = (T)db_local;
}
}
}
// Addition done deterministically via a 2-pass approach. Each CTA writes out partial
// sum, and the last CTA in grid Y dimension accumulates partials serially and writes to result.
template <typename T, int UNROLL_FACTOR>
__global__ void biasAddRelu_bprop_aligned(
T* Y,
T* dY,
int features,
int batch_size,
T* dX,
volatile float* intermediate,
int* semaphores,
T* db) {
// The feature that this thread is responsible for
int f = blockIdx.x * blockDim.x + threadIdx.x;
// Compute the span this thread is responsible for
// For this block
int b_chunkSize = (batch_size + gridDim.y - 1) / gridDim.y;
int b_nStart = blockIdx.y * b_chunkSize;
int b_nSpan = min(batch_size, b_nStart + b_chunkSize) - b_nStart;
// For this thread
int chunkSize = (b_chunkSize + blockDim.y - 1) / blockDim.y;
int nStart = threadIdx.y * chunkSize + b_nStart;
int nSpan = min(b_nStart + b_nSpan, nStart + chunkSize) - nStart;
volatile float* out = intermediate + blockIdx.y * features;
// Flag to trigger last reduction.
__shared__ bool isLastBlock;
// Accumulate db in FP32 always
float db_local[ILP];
T r_y[ILP];
T r_dy[ILP];
#pragma unroll
for(int ii=0;ii<ILP;ii++){
db_local[ii] = 0.f;
}
// f always <= features in this case
//if (f < features) {
int nidx = 0;
// Handle non-multiple of UNROLL_FACTOR residue
for (; nidx < nSpan % UNROLL_FACTOR; nidx++) {
int row, col, flat_idx;
row = f;
col = nStart + nidx;
flat_idx = col * features / ILP + row;
load_store(r_y, Y, 0, flat_idx);
load_store(r_dy, dY, 0, flat_idx);
#pragma unroll
for(int ii=0;ii<ILP;ii++){
if ((float)r_y[ii] <= 0.f)
r_dy[ii] = 0;
db_local[ii] += (float)r_dy[ii];
}
load_store(dX, r_dy, flat_idx, 0);
}
// Handle meat of work
for (; (nidx + UNROLL_FACTOR - 1) < nSpan; nidx += UNROLL_FACTOR) {
int row, col, flat_idx;
row = f;
col = nStart + nidx;
flat_idx = col * features / ILP + row; // total threads in x == features/ILP
#pragma unroll
for (int u = 0; u < UNROLL_FACTOR; u++) {
load_store(r_y, Y, 0, flat_idx);
load_store(r_dy, dY, 0, flat_idx);
#pragma unroll
for(int ii=0;ii<ILP;ii++){
if ((float)r_y[ii] <= 0.f)
r_dy[ii] = 0;
db_local[ii] += (float)r_dy[ii];
}
load_store(dX, r_dy, flat_idx, 0);
flat_idx += features/ILP;
}
}
// we know block size for now
__shared__ float smem[BIAS_RELU_BW_NTHREADS_X*BIAS_RELU_BW_NTHREADS_Y*ILP];
// naive block reduction on y-dim
int linear_idx = threadIdx.y * blockDim.x + threadIdx.x;
float* smem_out = smem + ILP * linear_idx;
#pragma unroll
for(int ii=0;ii<ILP;ii++){
smem_out[ii] = db_local[ii]; // reuse local dy buffer
}
__syncthreads();
if(threadIdx.y == 0) {
for(int yidx = 1; yidx < blockDim.y; yidx++){
float* smem_in = smem + ILP * (yidx * blockDim.x + threadIdx.x);
#pragma unroll
for(int ii=0;ii<ILP;ii++){
db_local[ii] += smem_in[ii]; // reuse local dy buffer
}
}
// block result is in db_local now for all threadIdx.y == 0
if(gridDim.y == 1) {
#pragma unroll
for(int ii=0;ii<ILP;ii++){
r_dy[ii] = db_local[ii]; // reuse local dy buffer
}
load_store(db, r_dy, f, 0);
return;
}
// Write out partial result
load_store(out, db_local, f, 0);
}
__threadfence();
__syncthreads();
// Increment semaphore and check if this is the last CTA in the grid_y dimension.
// Only thread (0,0) calls this
if (threadIdx.x == 0 && threadIdx.y == 0) {
unsigned int sum_idx;
sum_idx = atomicAdd(&(semaphores[blockIdx.x]), 1);
isLastBlock = (sum_idx == (gridDim.y - 1));
}
__syncthreads();
#pragma unroll
for(int ii=0;ii<ILP;ii++){
db_local[ii] = 0.f;
}
float r_db[ILP];
// No block reduction for now, only thread (*,0) do grid reduction
if (isLastBlock) {
if(threadIdx.y == 0){
for (int n = 0; n < gridDim.y; n++) {
int row, col;
row = f;
col = n;
load_store(r_db, intermediate, 0, col * features / ILP + row);
#pragma unroll
for(int ii=0;ii<ILP;ii++){
db_local[ii] += r_db[ii];
}
}
#pragma unroll
for(int ii=0;ii<ILP;ii++){
r_dy[ii] = db_local[ii]; // reuse local dy buffer
}
load_store(db, r_dy, f, 0);
}
}
}
// Lists where the num_layers-1 intermediate Y buffers start in reserved space on fprop, starting
// offset 0. The last Y value is, of course, stored in the user provided output buffer.
void get_y_offsets(
int batch_size,
int num_layers,
const int* output_features,
int* y_start_offsets) {
y_start_offsets[0] = 0;
for (int i = 1; i < num_layers; i++) {
y_start_offsets[i] = y_start_offsets[i - 1] + batch_size * output_features[i - 1];
}
}
// Returns the reserved space (in elements) needed for the MLP
size_t get_mlp_reserved_space(int64_t batch_size, int num_layers, const int* output_features) {
size_t res_space = 0;
// Need to store output of every intermediate MLP - size equal to output_features[i] * batch_size
// for all 'i' in [0, num_layers-1)
for (int l = 0; l < num_layers; l++) {
res_space += output_features[l] * batch_size;
}
return res_space;
}
// Returns the size of all fprop activations combined
size_t get_all_activations_size(int64_t batch_size, int num_layers, const int* output_features) {
size_t acts_size = 0;
for (int l = 0; l < num_layers; l++) {
acts_size += output_features[l] * batch_size;
}
return acts_size;
}
#if 0
// Returns the work space (in elements) needed for the MLP bprop.
size_t get_mlp_bp_workspace (int batch_size, int num_layers, const int* output_features) {
/*
Workspace is partitioned as
DY_GEMMs : DX_GEMMs
*/
size_t work_space = 0;
// Store each intermediate dY explicitly. Need 2 dYs per MLP layer (one for o/p
// of biasReLU_bp and one for o/p of dgrad GEMM).
work_space += 2*get_all_activations_size(batch_size, num_layers, output_features);
return work_space;
}
#endif
// Scratch space needed for reductions in number of elements
size_t get_reduction_scratch_space(int batch_size, int num_layers, const int* output_features) {
size_t max_scratch_space = 0;
// Loop over all layers to see which one needs the max scratch space
for (int l = 0; l < num_layers; l++) {
// need to find max(aligned, not_aligned)
int tmp, res0, res1;
int block_x = BIAS_RELU_BW_NTHREADS_X;
int block_y = BIAS_RELU_RED_PER_THREAD * BIAS_RELU_BW_NTHREADS_Y;
get_biasAddRelu_bprop_grid_size(
output_features[l], batch_size, block_x, block_y, &tmp, &res0);
block_x = ILP * BIAS_RELU_BW_NTHREADS_X;
get_biasAddRelu_bprop_grid_size(
output_features[l], batch_size, block_x, block_y, &tmp, &res1);
max_scratch_space = std::max(max_scratch_space, (size_t)(output_features[l] * res0));
max_scratch_space = std::max(max_scratch_space, (size_t)(output_features[l] * res1));
}
return max_scratch_space;
}
// Buffer for semaphores
size_t get_semaphores_size(int num_layers, const int* output_features) {
// Upper bound on semaphores is one per feature for the layer
// with the most features.
int max_features = 0;
for (int l = 0; l < num_layers; l++) {
max_features = std::max(max_features, output_features[l]);
}
return (size_t)max_features;
}
// Returns the work space (in elements) needed for the MLP bprop.
template <typename T>
size_t get_mlp_bp_workspace_in_bytes(int batch_size, int num_layers, const int* output_features) {
size_t work_space = 0;
// Store each intermediate dY explicitly. Need 2 dYs per MLP layer (one for o/p
// of biasReLU_bp and one for o/p of dgrad GEMM).
work_space += 2 * get_all_activations_size(batch_size, num_layers, output_features) * sizeof(T);
work_space +=
get_reduction_scratch_space(batch_size, num_layers, output_features) * sizeof(float);
work_space += get_semaphores_size(num_layers, output_features) * sizeof(int);
return work_space;
}
// Returns pointers to each segment of the workspace
template <typename T>
void partition_mlp_bp_workspace(
int batch_size,
int num_layers,
const int* output_features,
void* work_space,
T** dy_gemms,
T** dx_gemms,
float** db_scratch,
int** semaphores) {
/*
Workspace is partitioned as
DY_GEMMs : DX_GEMMs : DB_SCRATCH : SEMAPHORES
*/
// Start address where dy_gemm tensors are stored
*dy_gemms = reinterpret_cast<T*>(work_space);
// Start address where dx_gemm tensors are stored
*dx_gemms = *dy_gemms + get_all_activations_size(batch_size, num_layers, output_features);
// Start address where db intermediate tensors are stored
*db_scratch = reinterpret_cast<float*>(
*dx_gemms + get_all_activations_size(batch_size, num_layers, output_features));
// Start address of semaphores
*semaphores = reinterpret_cast<int*>(
*db_scratch + get_reduction_scratch_space(batch_size, num_layers, output_features));
return;
}
// Does a simple MLP fprop (GEMM+bias+ReLU).
// Can handle num_layers number of layers, each with its own shape. Output of layer i is assumed
// to be input of layer i+1. output_features, WPtr and BPtr are arrays of length num_layers, and
// must be in the same order i.e. WPtr[i] and BPtr[i] are respectively the weight and bias of layer
// 'i'.
template <typename T>
int mlp_fp(
T* X,
int input_features,
int batch_size,
T** WPtr,
int num_layers,
int* output_features,
T** BPtr,
T* Y,
T* reserved_space,
int use_bias,
int activation,
void* lt_workspace) {
T *weight, *input, *output, *bias;
T *reserved_space_x, *reserved_space_y;
reserved_space_x = NULL;
reserved_space_y = reserved_space;
// Get cublas handle from Pytorch
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
// Get the stream from cublas handle to reuse for biasReLU kernel.
cudaStream_t stream;
cublasGetStream(handle, &stream);
for (int layer = 0; layer < num_layers; layer++) {
weight = WPtr[layer];
input = (layer == 0) ? X : reserved_space_x;
output = (layer == num_layers - 1) ? Y : reserved_space_y;
if (use_bias) {
bias = BPtr[layer];
}
int ifeat = (layer == 0) ? input_features : output_features[layer - 1];
int ofeat = output_features[layer];
float one = 1.f;
float zero = 0.f;
// try with cublaslt first for supported case with valid handle
int cublaslt_status = 1;
#if defined(CUBLAS_VERSION) && CUBLAS_VERSION >= 11000
if(activation < 1){
cublaslt_status = mlp_gemm_lt(
//ltHandle,
(cublasLtHandle_t)handle,
CUBLAS_OP_T,
CUBLAS_OP_N,
ofeat,
batch_size,
ifeat,
&one,
weight,
ifeat,
input,
ifeat,
&zero,
output,
ofeat,
lt_workspace,
1 << 22,
stream,
use_bias == 1,
activation == 1,
bias);
}
#endif
// if cublaslt failed or not executed, fallback to cublas
if (cublaslt_status != 0) {
cublasStatus_t cublas_status;
// Call GEMM: fprop is Y = W'X
cublas_status = mlp_gemm(
handle,
CUBLAS_OP_T,
CUBLAS_OP_N,
ofeat,
batch_size,
ifeat,
&one,
weight,
ifeat,
input,
ifeat,
&zero,
output,
ofeat);
if (cublas_status != CUBLAS_STATUS_SUCCESS) {
printf("GEMM fprop failed with %d\n", cublas_status);
return 1;
}
const uint &input_size = ofeat;
int num_blocks = 0;
int num_SMs = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;
// Call biasReLU
if(use_bias == 1) {
if (activation == 0) { // no activation
cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks, biasAdd_fprop<T>, BIAS_RELU_FW_NTHREADS, 0);
biasAdd_fprop<<<num_SMs*num_blocks, BIAS_RELU_FW_NTHREADS, 0, stream>>>(output, bias, batch_size, input_size);
} else if (activation == 1) { // relu
cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks, biasAddRelu_fprop<T>, BIAS_RELU_FW_NTHREADS, 0);
biasAddRelu_fprop<<<num_SMs*num_blocks, BIAS_RELU_FW_NTHREADS, 0, stream>>>(output, bias, batch_size, input_size);
} else if (activation == 2) { // sigmoid
cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks, biasAdd_fprop<T>, BIAS_RELU_FW_NTHREADS, 0);
biasAdd_fprop<<<num_SMs*num_blocks, BIAS_RELU_FW_NTHREADS, 0, stream>>>(output, bias, batch_size, input_size);
cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks, Sigmoid_fprop<T>, BIAS_RELU_FW_NTHREADS, 0);
Sigmoid_fprop<<<num_SMs*num_blocks, BIAS_RELU_FW_NTHREADS, 0, stream>>>(output, batch_size, input_size);
}
} else {
// don't need to do anything in case of no activation and no bias
if (activation == 1) { // relu
cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks, Relu_fprop<T>, BIAS_RELU_FW_NTHREADS, 0);
Relu_fprop<<<num_SMs*num_blocks, BIAS_RELU_FW_NTHREADS, 0, stream>>>(output, batch_size, input_size);
} else if (activation == 2) { // sigmoid
cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks, Sigmoid_fprop<T>, BIAS_RELU_FW_NTHREADS, 0);
Sigmoid_fprop<<<num_SMs*num_blocks, BIAS_RELU_FW_NTHREADS, 0, stream>>>(output, batch_size, input_size);
}
}
}
// Set current output as next layer input
reserved_space_x = reserved_space_y;
// Set next layer output
reserved_space_y += ofeat * batch_size;
}
return 0;
}
// Does a simple MLP bprop (GEMM+bias+ReLU).
// Needs reserved space to come back exactly as it was populated in fprop.
// Does dgrad and wgrad sequentially.
template <typename T>
int mlp_bp(
T* X,
T* Y,
int input_features,
int batch_size,
T** WPtr,
int num_layers,
int* output_features,
T* dY,
T* reserved_space,
T* work_space,
T* dX,
T** dwPtr,
T** dbPtr,
bool requires_grad,
int use_bias,
int activation) {
T* weight;
T *dweight, *dx, *dy, *dbias;
T *x, *y;
// Where the dx of the biasReLU (== dy of gemm) is stored. Can be thrown away
// after bp call.
T* dy_gemm_base;
// Where the dx after GEMM is stored.
T* dx_gemm_base;
// Where partial reduction results are stored.
float* db_scratch;
// Semaphores for reduction.
int* semaphores;
partition_mlp_bp_workspace<T>(
batch_size,
num_layers,
output_features,
work_space,
&dy_gemm_base,
&dx_gemm_base,
&db_scratch,
&semaphores);
size_t semaphore_size = get_semaphores_size(num_layers, output_features) * sizeof(int);
// Get cublas handle from Pytorch
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
// Get the stream from cublas handle to reuse for biasReLU kernel.
cudaStream_t stream;
cublasGetStream(handle, &stream);
int* y_offsets = (int*)malloc(num_layers * sizeof(int));
get_y_offsets(batch_size, num_layers, output_features, y_offsets);
for (int layer = num_layers - 1; layer >= 0; layer--) {
weight = WPtr[layer];
dweight = dwPtr[layer];
// x is read from reserved space
x = (layer == 0) ? X : reserved_space + y_offsets[layer - 1];
// dx is written in workspace for all but layer==0
dx = (layer == 0) ? dX : dx_gemm_base + y_offsets[layer - 1];
// y is read from reserved space
y = (layer == num_layers - 1) ? Y : reserved_space + y_offsets[layer];
// dx from layer+1
dy = (layer == num_layers - 1) ? dY : dx_gemm_base + y_offsets[layer];
// dy_gemm is written to and read immediately
T* dy_gemm = dy_gemm_base + y_offsets[layer];
dbias = dbPtr[layer];
int xfeat = (layer == 0) ? input_features : output_features[layer - 1];
int yfeat = output_features[layer];
float one = 1.f;
float zero = 0.f;
if (use_bias == 1) {
if (activation == 0) { // no acitvation
// bgrad
dim3 block(BIAS_RELU_BW_NTHREADS_X, BIAS_RELU_BW_NTHREADS_Y);
int grid_x, grid_y;
cudaMemsetAsync(semaphores, 0, semaphore_size, stream);
int block_x = BIAS_RELU_BW_NTHREADS_X;
int block_y = BIAS_RELU_RED_PER_THREAD * BIAS_RELU_BW_NTHREADS_Y;
get_biasAddRelu_bprop_grid_size(yfeat, batch_size, block_x, block_y, &grid_x, &grid_y);
dim3 grid(grid_x, grid_y);
biasAdd_bprop<T, 4><<<grid, block, 0, stream>>>(
dy, yfeat, batch_size, db_scratch, semaphores, dbias);
// bypass dgrad through reset pointer
dy_gemm = dy;
} else if (activation == 1) { // relu
dim3 block(BIAS_RELU_BW_NTHREADS_X, BIAS_RELU_BW_NTHREADS_Y);
int grid_x, grid_y;
cudaMemsetAsync(semaphores, 0, semaphore_size, stream);
if(yfeat % (ILP * BIAS_RELU_BW_NTHREADS_X) == 0 &&
is_aligned(y) &&
is_aligned(dy) &&
is_aligned(dy_gemm) &&
is_aligned(dbias)){
int block_x = ILP * BIAS_RELU_BW_NTHREADS_X;
int block_y = BIAS_RELU_RED_PER_THREAD * BIAS_RELU_BW_NTHREADS_Y;
get_biasAddRelu_bprop_grid_size(yfeat, batch_size, block_x, block_y, &grid_x, &grid_y);
dim3 grid(grid_x, grid_y);
biasAddRelu_bprop_aligned<T, 4><<<grid, block, 0, stream>>>(
y, dy, yfeat, batch_size, dy_gemm, db_scratch, semaphores, dbias);
} else {
int block_x = BIAS_RELU_BW_NTHREADS_X;
int block_y = BIAS_RELU_RED_PER_THREAD * BIAS_RELU_BW_NTHREADS_Y;
get_biasAddRelu_bprop_grid_size(yfeat, batch_size, block_x, block_y, &grid_x, &grid_y);
dim3 grid(grid_x, grid_y);
biasAddRelu_bprop<T, 4><<<grid, block, 0, stream>>>(
y, dy, yfeat, batch_size, dy_gemm, db_scratch, semaphores, dbias);
}
} else if (activation == 2) { // sigmoid
// activation backward
int num_blocks = 0;
int num_SMs = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;
cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks, Sigmoid_bprop<T>, BIAS_RELU_FW_NTHREADS, 0);
Sigmoid_bprop<<<num_SMs*num_blocks, BIAS_RELU_FW_NTHREADS, 0, stream>>>(dy, y, batch_size, yfeat, dy_gemm);
// bgrad, from dy_gemm
dim3 block(BIAS_RELU_BW_NTHREADS_X, BIAS_RELU_BW_NTHREADS_Y);
int grid_x, grid_y;
cudaMemsetAsync(semaphores, 0, semaphore_size, stream);
int block_x = BIAS_RELU_BW_NTHREADS_X;
int block_y = BIAS_RELU_RED_PER_THREAD * BIAS_RELU_BW_NTHREADS_Y;
get_biasAddRelu_bprop_grid_size(yfeat, batch_size, block_x, block_y, &grid_x, &grid_y);
dim3 grid(grid_x, grid_y);
biasAdd_bprop<T, 4><<<grid, block, 0, stream>>>(
dy_gemm, yfeat, batch_size, db_scratch, semaphores, dbias);
}
} else { // no bias below
if (activation == 0) {
// bypass dgrad through reset pointer
dy_gemm = dy;
} else if (activation == 1) { // relu
int num_blocks = 0;
int num_SMs = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;
cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks, Relu_bprop<T>, BIAS_RELU_FW_NTHREADS, 0);
Relu_bprop<<<num_SMs*num_blocks, BIAS_RELU_FW_NTHREADS, 0, stream>>>(dy, y, batch_size, yfeat, dy_gemm);
} else if (activation == 2) { // sigmoid
int num_blocks = 0;
int num_SMs = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;
cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks, Sigmoid_bprop<T>, BIAS_RELU_FW_NTHREADS, 0);
Sigmoid_bprop<<<num_SMs*num_blocks, BIAS_RELU_FW_NTHREADS, 0, stream>>>(dy, y, batch_size, yfeat, dy_gemm);
}
}
cublasStatus_t cublas_status;
// Call GEMM dgrad
if (layer > 0 || requires_grad == 1) {
cublas_status = mlp_gemm(
handle,
CUBLAS_OP_N,
CUBLAS_OP_N,
xfeat,
batch_size,
yfeat,
&one,
weight,
xfeat,
dy_gemm,
yfeat,
&zero,
dx,
xfeat);
if (cublas_status != CUBLAS_STATUS_SUCCESS) {
printf("GEMM dgrad failed with %d\n", cublas_status);
return 1;
}
}
// Call GEMM wgrad
cublas_status = mlp_gemm(
handle,
CUBLAS_OP_N,
CUBLAS_OP_T,
xfeat,
yfeat,
batch_size,
&one,
x,
xfeat,
dy_gemm,
yfeat,
&zero,
dweight,
xfeat);
if (cublas_status != CUBLAS_STATUS_SUCCESS) {
printf("GEMM wgrad failed with %d\n", cublas_status);
return 1;
}
}
return 0;
}
// Instantiate for floating point types
template int mlp_fp<float>(
float* X,
int input_features,
int batch_size,
float** WPtr,
int num_layers,
int* output_features,
float** BPtr,
float* Y,
float* reserved_space,
int use_bias,
int activation,
void* lt_workspace);
template int mlp_bp<float>(
float* X,
float* Y,
int input_features,
int batch_size,
float** WPtr,
int num_layers,
int* output_features,
float* dY,
float* reserved_space,
float* work_space,
float* dX,
float** dwPtr,
float** dbPtr,
bool requires_grad,
int use_bias,
int activation);
template int mlp_fp<at::Half>(
at::Half* X,
int input_features,
int batch_size,
at::Half** WPtr,
int num_layers,
int* output_features,
at::Half** BPtr,
at::Half* Y,
at::Half* reserved_space,
int use_bias,
int activation,
void* lt_workspace);
template int mlp_bp<at::Half>(
at::Half* X,
at::Half* Y,
int input_features,
int batch_size,
at::Half** WPtr,
int num_layers,
int* output_features,
at::Half* dY,
at::Half* reserved_space,
at::Half* work_space,
at::Half* dX,
at::Half** dwPtr,
at::Half** dbPtr,
bool requires_grad,
int use_bias,
int activation);
template int mlp_fp<double>(
double* X,
int input_features,
int batch_size,
double** WPtr,
int num_layers,
int* output_features,
double** BPtr,
double* Y,
double* reserved_space,
int use_bias,
int activation,
void* lt_workspace);
template int mlp_bp<double>(
double* X,
double* Y,
int input_features,
int batch_size,
double** WPtr,
int num_layers,
int* output_features,
double* dY,
double* reserved_space,
double* work_space,
double* dX,
double** dwPtr,
double** dbPtr,
bool requires_grad,
int use_bias,
int activation);
template size_t get_mlp_bp_workspace_in_bytes<float>(
int batch_size,
int num_layers,
const int* output_features);
template size_t get_mlp_bp_workspace_in_bytes<at::Half>(
int batch_size,
int num_layers,
const int* output_features);
template size_t get_mlp_bp_workspace_in_bytes<double>(
int batch_size,
int num_layers,
const int* output_features);
|