File size: 4,365 Bytes
69acc93
 
b38913b
69acc93
 
 
 
b38913b
69acc93
 
 
2d49f29
6ffc1bc
 
2d49f29
 
 
 
 
 
 
6ffc1bc
 
2d49f29
6ffc1bc
 
 
 
 
 
 
69acc93
6ffc1bc
69acc93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
from huggingface_hub import hf_hub_download
import subprocess
import tempfile
import shutil
import os
import spaces

from transformers import T5ForConditionalGeneration, T5Tokenizer
import os

print ("starting the app.")
def install_apex():
    # Install Apex in editable mode from the specified GitHub repository
    # cmd = [
    #     'pip', 'install', '-v','--no-cache-dir', '--no-build-isolation',
    #     '--config-settings', 'build-option=--cpp_ext', '--config-settings',
    #     'build-option=--cuda_ext', 'git+https://github.com/sandeshrajbhandari/apex.git#egg=apex'
    # ]
    cmd = '!pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/sandeshrajbhandari/apex.git#egg=apex'
    subprocess.run(cmd, shell=True)

try:
    
    import apex
except ModuleNotFoundError:
    print("Apex not found, installing...")
    install_apex()
    # Try to import Apex again after installation
    import apex

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

def download_t5_model(model_id, save_directory):
    # Modelin tokenizer'ını ve modeli indir
    model = T5ForConditionalGeneration.from_pretrained(model_id)
    tokenizer = T5Tokenizer.from_pretrained(model_id)

    # Model ve tokenizer'ı belirtilen dizine kaydet
    if not os.path.exists(save_directory):
        os.makedirs(save_directory)
    model.save_pretrained(save_directory)
    tokenizer.save_pretrained(save_directory)

# Model ID ve kaydedilecek dizin
model_id = "DeepFloyd/t5-v1_1-xxl"
save_directory = "pretrained_models/t5_ckpts/t5-v1_1-xxl"

# Modeli indir
download_t5_model(model_id, save_directory)

def download_model(repo_id, model_name):
    model_path = hf_hub_download(repo_id=repo_id, filename=model_name)
    return model_path

import glob

@spaces.GPU
def run_inference(model_name, prompt_text):
    repo_id = "hpcai-tech/Open-Sora"
    
    # Map model names to their respective configuration files
    config_mapping = {
        "OpenSora-v1-16x256x256.pth": "configs/opensora/inference/16x256x256.py",
        "OpenSora-v1-HQ-16x256x256.pth": "configs/opensora/inference/16x512x512.py",
        "OpenSora-v1-HQ-16x512x512.pth": "configs/opensora/inference/64x512x512.py"
    }
    
    config_path = config_mapping[model_name]
    ckpt_path = download_model(repo_id, model_name)

    # Save prompt_text to a temporary text file
    prompt_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w')
    prompt_file.write(prompt_text)
    prompt_file.close()

    with open(config_path, 'r') as file:
        config_content = file.read()
    config_content = config_content.replace('prompt_path = "./assets/texts/t2v_samples.txt"', f'prompt_path = "{prompt_file.name}"')
    
    with tempfile.NamedTemporaryFile('w', delete=False, suffix='.py') as temp_file:
        temp_file.write(config_content)
        temp_config_path = temp_file.name

    cmd = [
        "torchrun", "--standalone", "--nproc_per_node", "1",
        "scripts/inference.py", temp_config_path,
        "--ckpt-path", ckpt_path
    ]
    subprocess.run(cmd)

    save_dir = "./outputs/samples/"  # Örneğin, inference.py tarafından kullanılan kayıt dizini
    list_of_files = glob.glob(f'{save_dir}/*')
    if list_of_files:
        latest_file = max(list_of_files, key=os.path.getctime)
        return latest_file
    else:
        print("No files found in the output directory.")
        return None

    # Clean up the temporary files
    os.remove(temp_file.name)
    os.remove(prompt_file.name)

def main():
    gr.Interface(
        fn=run_inference,
        inputs=[
            gr.Dropdown(choices=[
                "OpenSora-v1-16x256x256.pth",
                "OpenSora-v1-HQ-16x256x256.pth",
                "OpenSora-v1-HQ-16x512x512.pth"
            ], 
            value="OpenSora-v1-16x256x256.pth",
            label="Model Selection"),
            gr.Textbox(label="Prompt Text", value="Enter prompt text here")
        ],
        outputs=gr.Video(label="Output Video"),
        title="Open-Sora Inference",
        description="Run Open-Sora Inference with Custom Parameters",
    ).launch()

if __name__ == "__main__":
    main()