Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from PIL import Image | |
from datasets import load_dataset, Image, list_datasets | |
from PIL import Image | |
MODELS = [ | |
"", | |
"google/vit-base-patch16-224", #Classifição geral | |
"nateraw/vit-age-classifier" #Classifição de idade | |
] | |
DATASETS = [ | |
"", | |
"NunT/vit-base-patch16-224", #Classifição geral | |
"NunT/vit-age-classifier" #Classifição de idade | |
] | |
MAX_N_LABELS = 5 | |
def classify_images(classifier_model, dataset_to_classify): | |
for image in dataset: | |
st("Image classification: ", image['file']) | |
''' | |
image_path = image['file'] | |
img = Image.open(image_path) | |
st.image(img, caption="Original image", use_column_width=True) | |
results = classifier(image_path, top_k=MAX_N_LABELS) | |
st.write(results) | |
st.write("----") | |
''' | |
def main(): | |
st.title("Bulk Image Classification") | |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.") | |
st.write("Soon we will have a dataset template") | |
''' | |
Model | |
''' | |
shosen_model_name = st.selectbox("Select the model to use", MODELS) | |
if shosen_model_name is not None: | |
st.write("You selected", shosen_model_name) | |
''' | |
Dataset | |
''' | |
shosen_dataset_name =st.radio("Select the model to use", MODELS) | |
if shosen_dataset_name is not None: | |
st.write("You selected", shosen_dataset_name) | |
image_object = dataset['pasta'][0]["image"] | |
''' | |
click to classify | |
''' | |
if shosen_model is not None and shosen_dataset is not None: | |
st.image(shosen_dataset[0], caption="Uploaded Image", use_column_width=True) | |
if st.button("Classify images"): | |
dataset = load_dataset("Nunt/testedata","testedata_readme") | |
classifier = pipeline('image-classification', model=model_name, device=0) | |
classify_images(classifier, dataset) | |
if __name__ == "__main__": | |
main() |