|
import streamlit as st |
|
from transformers import pipeline |
|
from PIL import Image |
|
from datasets import load_dataset, Image, list_datasets |
|
from PIL import Image |
|
|
|
MODELS = [ |
|
"", |
|
"google/vit-base-patch16-224", |
|
"nateraw/vit-age-classifier" |
|
] |
|
DATASETS = [ |
|
"", |
|
"Nunt/testedata", |
|
"Nunt/backup_leonardo_2024-02-01" |
|
] |
|
MAX_N_LABELS = 5 |
|
|
|
|
|
def classify_images(classifier_model, dataset_to_classify): |
|
|
|
for image in dataset: |
|
st("Image classification: ", image['file']) |
|
''' |
|
image_path = image['file'] |
|
img = Image.open(image_path) |
|
st.image(img, caption="Original image", use_column_width=True) |
|
results = classifier(image_path, top_k=MAX_N_LABELS) |
|
st.write(results) |
|
st.write("----") |
|
''' |
|
|
|
|
|
|
|
def main(): |
|
st.title("Bulk Image Classification") |
|
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.") |
|
st.write("Soon we will have a dataset template") |
|
|
|
|
|
''' |
|
Model |
|
''' |
|
shosen_model_name = st.selectbox("Select the model to use", MODELS) |
|
if shosen_model_name is not None: |
|
st.write("You selected", shosen_model_name) |
|
|
|
''' |
|
Dataset |
|
''' |
|
shosen_dataset_name = st.radio("Select the model to use", DATASETS) |
|
if shosen_dataset_name is not None: |
|
st.write("You selected", shosen_dataset_name) |
|
image_object = dataset['pasta'][0]["image"] |
|
|
|
''' |
|
click to classify |
|
''' |
|
if shosen_model_name is not None and shosen_dataset_name is not None: |
|
st.image(shosen_dataset[0], caption="Uploaded Image", use_column_width=True) |
|
if st.button("Classify images"): |
|
dataset = load_dataset("Nunt/testedata","testedata_readme") |
|
classifier = pipeline('image-classification', model=model_name, device=0) |
|
classify_images(classifier, dataset) |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |