import asyncio import logging import uvicorn import torch import gradio as gr from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials from pydantic import BaseModel, Field, model_validator from typing import List, Dict, Optional class EmbeddingRequest(BaseModel): # 强制锁定模型参数 model: str = Field( default="jinaai/jina-embeddings-v3", description="此参数仅用于API兼容,实际模型固定为jinaai/jina-embeddings-v3", frozen=True # 禁止修改 ) # 支持三种输入字段 inputs: Optional[str] = Field(None, description="输入文本(兼容HuggingFace格式)") input: Optional[str] = Field(None, description="输入文本(兼容OpenAI格式)") prompt: Optional[str] = Field(None, description="输入文本(兼容Ollama格式)") # 自动合并输入字段 @model_validator(mode='before') @classmethod def merge_input_fields(cls, values): input_fields = ["inputs", "input", "prompt"] for field in input_fields: if values.get(field): values["inputs"] = values[field] break else: raise ValueError("必须提供 inputs/input/prompt 任一字段") return values class EmbeddingResponse(BaseModel): object: str = "list" data: List model: str usage: Dict[str, int] class Config: arbitrary_types_allowed = True class EmbeddingService: def __init__(self): self._true_model_name = "jinaai/jina-embeddings-v3" # 硬编码模型名称 self.max_length = 512 self.device = torch.device("cpu") self.model = None self.tokenizer = None self.setup_logging() torch.set_num_threads(4) # CPU优化 def setup_logging(self): logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) self.logger = logging.getLogger(__name__) async def initialize(self): try: from transformers import AutoTokenizer, AutoModel self.tokenizer = AutoTokenizer.from_pretrained( self._true_model_name, trust_remote_code=True ) self.model = AutoModel.from_pretrained( self._true_model_name, trust_remote_code=True ).to(self.device) self.model.eval() torch.set_grad_enabled(False) self.logger.info(f"强制加载模型: {self._true_model_name}") except Exception as e: self.logger.error(f"模型初始化失败: {str(e)}") raise def get_embedding(self, text: str) -> List[float]: try: inputs = self.tokenizer( text, return_tensors="pt", truncation=True, max_length=self.max_length, padding=True ) with torch.no_grad(): outputs = self.model(**inputs).last_hidden_state.mean(dim=1) return outputs.numpy().tolist()[0] except Exception as e: self.logger.error(f"生成嵌入向量失败: {str(e)}") raise embedding_service = EmbeddingService() app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) security = HTTPBearer() @app.post("/embed", response_model=EmbeddingResponse) @app.post("/api/embeddings", response_model=EmbeddingResponse) @app.post("/api/embed", response_model=EmbeddingResponse) @app.post("/v1/embeddings", response_model=EmbeddingResponse) @app.post("/generate_embeddings", response_model=EmbeddingResponse) @app.post("/api/v1/embeddings", response_model=EmbeddingResponse) @app.post("/hf/v1/embeddings", response_model=EmbeddingResponse) @app.post("/api/v1/chat/completions", response_model=EmbeddingResponse) @app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse) async def generate_embeddings(request: EmbeddingRequest, credentials: HTTPAuthorizationCredentials = Depends(security)): try: # 计算token数量 token_count = len(embedding_service.tokenizer.encode(request.inputs)) embedding = await asyncio.get_running_loop().run_in_executor( None, embedding_service.get_embedding, request.inputs # 使用合并后的输入字段 ) return EmbeddingResponse( object="list", data=[ { "object": "embedding", "index": 0, "embedding": embedding } ], model=request.model, usage={ "prompt_tokens": token_count, "total_tokens": token_count } ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/") async def root(): return { "status": "active", "true_model": embedding_service._true_model_name, "device": str(embedding_service.device) } def gradio_interface(text: str) -> Dict: try: embedding = embedding_service.get_embedding(text) return { "status": "success", "embeddings": [embedding] } except Exception as e: return { "status": "error", "message": str(e) } iface = gr.Interface( fn=gradio_interface, inputs=gr.Textbox(lines=3, label="输入文本"), outputs=gr.JSON(label="嵌入向量结果"), title="Jina Embeddings V3", description="强制使用jinaai/jina-embeddings-v3模型(无视请求中的model参数)", examples=[[ "Represent this sentence for searching relevant passages: " "The sky is blue because of Rayleigh scattering" ]] ) @app.on_event("startup") async def startup_event(): await embedding_service.initialize() if __name__ == "__main__": asyncio.run(embedding_service.initialize()) gr.mount_gradio_app(app, iface, path="/ui") uvicorn.run("app:app", host="0.0.0.0", port=7860)